1M. Sandoval-Hernandez, 1S. E. Torreblanca-Bouchan, 2G.J. Morales-Alarcon, 3U. A. Filobello-Nino, 3V.M. Jimenez-Fernandez, 3A. R. Escobar-Flores, 3H. Vazquez-Leal, 3R.Castañeda-Sheissa, 3O. Alvarez-Gasca, 3A.D. Contreras-Hernandez, 3N. Carrillo-Ramon, 3J. E Perez-Jacome-Friscione
1Centro de Bachillerato Tecnológico industrial y de servicios No. 190, Av. 15 Col. Venustiano Carranza 2da Sección, Boca del Río, 94297, Veracruz, México.
2Doctorado en Investigación e Innovación Educativa. Facultad de Filosofía y Letras Benemérita Universidad Autónoma de Puebla, Col. Centro Histórico, C. P. 72000, Puebla, Pue.
3Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, 91090, Veracruz, México
DOI : https://doi.org/10.47191/ijmra/v8-i02-21Google Scholar Download Pdf
ABSTRACT:
This paper presents the application of the Weighted Residuals Method, specifically the Least Squares Method, to solve the steady-state one-dimensional heat conduction problem in a slab with thermal conductivity linearly dependent on temperature. The proposed solution, a fourth-degree polynomial derived over the domain, demonstrates notable accuracy despite its simplicity, as evidenced by the RMS error of 0.0014328220965349. Additionally, if higher accuracy is desired, the Method of Weighted Residuals allows for the incorporation of more subdomains and the use of higher-degree polynomials.
KEYWORDS:Nonlinear differential equations, boundary value problems, heat problems. Numerical analysis
REFERENCES1) Roldan-Rojas, H. 2014. Termodinámica: Serie Universitaria Patria. Grupo Editorial Patria, 2014.
2) Calì, M. and Gregorio, P. 2020 Termodinamica. Società Editrice Esculapio.
3) Sandoval-Hernandez, M. A., Vazquez-Leal, H., Filobello-Nino, U., and Hernandez-Martinez, L., 2019. “New handy and accurate approximation for the Gaussian integrals with applications to science and engineering”. Open Mathematics, 17(1), 1774-1793. https://doi.org/10.1515/math-2019-0131
4) Sandoval-Hernandez, M. A. 2018. Vazquez-Leal, H.,Sarmiento-Reyes, A., Filobello-Nino, U., Castro-Gonzalez, F., Herrera-May, A.L., Callejas-Molina, R. A., Ruiz-Gomez. R "Optimized direct Padé and HPM for solving equation of oxygen diffusion in a spherical cell." Discrete Dynamics in Nature and Society 2018.1
5) Marinka V., Herisanu, N. 2011.Nonlinear Dynamical Systems in Engineering, Springer.
6) Mohamed, M. A. 2009 "Adomian decomposition method for solving the equation governing the unsteady flow of a polytropic gas." Applications and Applied Mathematics: An International Journal (AAM) 4.1 (2009)
7) Filobello-Nino, U., Sandoval-Hernandez, M. A., Alvarez-Gasca, O., Vazquez-Leal, H., Contreras-Hernandez, A. D., Hoyos-Reyes, C., Carrillo-Ramon, N., Bagatella-Flores, N., Sanchez-Orea, J., Cuellar-Hernandez, L., Mendez-Perez, J. M., Jimenez-Fernandez, V. M., Mota-Hernandez, A. J., Morales-Alarcon, G. J., Hernandez-Machuca, S.F., Martinez-Barrios, F. and Garcia-Lozano, M., 2022 “Analytical Exact and Approximate Solutions for Certain Diffusion Reactions”, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY 11(11). https://www.ijert.org/analytical-exact-and-approximate-solutions-for-certain-diffusion-reactions
8) Sandoval-Hernandez, M. A., Filobello-Nino, U. A., Vazquez-Leal, H., Huerta-Chua, J., Castaneda-Sheissa, R., Diaz-Arango, G. U., Callejas-Molina R.A, Torreblanca-Bouchan, S.E, Chong-Duran, J., and Pablo-Lopez, B. 2021 . “Taylor Series Method Coupled with Shooting Technique for Solving Boundary Value Problems”, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY 10(10). https://www.ijert.org/taylor-series-method-coupled-with-shooting-technique-for-solving-boundary-value-problems
9) Filobello-Nino, U., Alvarez-Gasca, O., Contreras-Hernandez, A. D., Palma-Grayeb, B. E., Cuellar-Hernandez, L., Hoyos-Reyes, C., J. M. Mendez-Perez, Jimenez-Fernandez, V. M., Sandoval-Hernandez, M. A., Callejas-Molina, R. A. Hernandez-Machuca, S. F., Pretelin-Canela, J. E., Cervantes-Perez, J., Vazquez-Aguirre, J. L., Varela-Lara, L. J., Bagatella-Flores, N., Vazquez-Leal, H., 2021, “A Handy Analytical Approximate Solution for A Heat Transfer Problem by using A Version of Taylor Method with Boundary Conditions”, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY 10(3). https://www.ijert.org/a-handy-analytical-approximate-solution-for-a-heat-transfer-problem-by-using-a-version-of-taylor-method-with-boundary-conditions
10) Vazquez-Leal, H., Sandoval-Hernandez, M., Castaneda-Sheissa, R., Filobello-Nino, U., and Sarmiento-Reyes, A. 2015, “Modified Taylor solution of equation of oxygen diffusion in a spherical cell with Michaelis-Menten uptake kinetics” . International Journal of Applied Mathematical Research, 4(2), 253-258. https://doi.org/10.14419/ijamr.v4i2.4273
11) Sandoval-Hernandez, M., Vazquez-Leal, H., Filobello-Nino, U., De-Leo-Baquero, E., Bielma-Perez, A. C., Vichi-Mendoza, J. C., Alvarez-Gasca, O., Contreras-Hernandez, A. D., Bagatella-Flores, N., Palma-Grayeb, B. E., Sanchez-Orea, J. Cuellar-Hernandez, L., 2021. “The Quadratic Equation and its Numerical Roots”. International Journal of Engineering Research y Technology, 10(6), 301-305. https://www.ijert.org/the-quadratic-equation-and-its-numerical-roots
12) Villadsen, J. V., and Warren E. Stewart. 1995 "Solution of boundary-value problems by orthogonal collocation." Chemical Engineering Science 50(24), 3981-3996.
13) Finlayson, B. A. 1980. Nonlinear analysis in chemical engineering, McGraw-Hill
14) Vemuri, V. R., and Karplus, W. J., 1981. Digital computer treatment of partial differential equations. Prentice Hall Professional Technical Reference.
15) Rapp, B. E. 2016.Microfluidics: modeling, mechanics and mathematics. William Andrew, Elsevier, 2016.
16) Gerald,C. F. (1997). Análisis numérico, Alfaomega,
17) Sandoval-Hernández, M.A., Alvarez-Gasca, O., Contreras-Hernandez, A. D., Pretelin-Canela, J. E., Palma-Grayeb, B. E., Jimenez-Fernandez, V. M., Filobello-Nino, U. Pereyra-Diaz, D., Hernandez-Machuca, S. F., Sampieri-Gonzalez C.E., González-Martínez, F. J., Castaneda-Sheissa, R. Hernandez-Mendez, S., Matias-Perez, J., Cuellar-Hernandez, L., Hoyos-Reyes, C., Cervantes-Perez, J. Varela-Lara, L. J., Vázquez-Aguirre, J.L., Gil-Adalid, L. ,Fernández-Rocha, J. L., Bagatella-Flores, N., Vazquez-Leal, H. 2019. “Exploring the classic perturbation method for obtaining single and multiple solutions of nonlinear algebraic problems with application to microelectronic circuits, International Journal of Engineering Research & Technology”, 8(9).
Volume 08 Issue 02 February 2025

There is an Open Access article, distributed under the term of the Creative Commons Attribution – Non Commercial 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and building upon the work for non-commercial use, provided the original work is properly cited.
Our Services and Policies
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected.
The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.
International Journal of Multidisciplinary Research and Analysis will publish 12 monthly online issues per year,IJMRA publishes articles as soon as the final copy-edited version is approved. IJMRA publishes articles and review papers of all subjects area.
Open access is a mechanism by which research outputs are distributed online, Hybrid open access journals, contain a mixture of open access articles and closed access articles.
International Journal of Multidisciplinary Research and Analysis initiate a call for research paper for Volume 08 Issue 02 (February 2025).
PUBLICATION DATES:
1) Last Date of Submission : 25 February 2025 .
2) Article published within a week.
3) Submit Article : editor@ijmra.in or Online
Why with us
1 : IJMRA only accepts original and high quality research and technical papers.
2 : Paper will publish immediately in current issue after registration.
3 : Authors can download their full papers at any time with digital certificate.
The Editors reserve the right to reject papers without sending them out for review.
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected. The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.