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ABSTRACT: This paper presents the application of the Weighted Residuals Method, specifically the Least Squares Method, to solve 

the steady-state one-dimensional heat conduction problem in a slab with thermal conductivity linearly dependent on 

temperature. The proposed solution, a fourth-degree polynomial derived over the domain, demonstrates notable accuracy 

despite its simplicity, as evidenced by the RMS error of 𝟎. 𝟎𝟎𝟏𝟒𝟑𝟐𝟖𝟐𝟐𝟎𝟗𝟔𝟓𝟑𝟒𝟗. Additionally, if higher accuracy is desired, the 

Method of Weighted Residuals allows for the incorporation of more subdomains and the use of higher-degree polynomials. 
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I. INTRODUCTION 

Thermodynamics is a discipline that falls within physics and is dedicated to the study of phenomena related to heat. The 

interest of thermodynamics focuses especially on considering the way in which different forms of energy are transformed and the 

relationship between these processes and temperature. In fact, there are evaluations that establish that the development of the 

discipline was done alongside an attempt to achieve greater efficiency in the use of machines, efficiency that implied that the least 

amount of energy was lost in the form of heat. 

     Thermodynamics is governed by a set of laws that describe the behaviour of energy. The first of these is the principle of energy 

conservation, which states that energy cannot be created or destroyed, but only transformed from one form to another. In this 

sense, heat is simply a form of energy that can be derived from others, such as work. The second law of thermodynamics dictates 

that in a closed system, entropy increases, where entropy is understood as a process of disorder in which energy becomes 

unavailable for work. Finally, the third law of thermodynamics asserts that it is impossible to reach absolute zero in a system 

through a finite number of steps. 

    Thermodynamics is governed by a set of laws that describe the behaviour of energy. The first of these is the principle of energy 

conservation, which states that energy cannot be created or destroyed, but only transformed from one form to another. In this 

sense, heat is simply a form of energy that can be derived from others, such as work. The second law of thermodynamics dictates 

that in a closed system, entropy increases, where entropy is understood as a process of disorder in which energy becomes 

unavailable for work. Finally, the third law of thermodynamics asserts that it is impossible to reach absolute zero in a system 

through a finite number of steps 

     The primary aim of this article is to develop a practical analytical approximation for the boundary value problem related to the 

steady-state, one-dimensional heat conduction within a slab. Importantly, the thermal conductivity of the slab is assumed to vary 

linearly with temperature. Given the fundamental importance of heat transfer phenomena, both in theoretical studies and 

practical applications such as equipment design and operation, there is a pressing need to explore analytical approximate solutions 
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to the governing equations. This effort aligns with the broader research objectives and highlights the necessity of developing 

efficient approaches to tackle heat transfer problems. There are various semi-analytical methods available for addressing 

nonlinear differential equations, including the Power Series Extender Method (PSEM) [3], the Homotopy Perturbation Method 

(HPM) [4], Homotopy Analysis Method (HAM) [5], Adomian’s Decomposition Method [6], the Modified Taylor Series Method 

(MTM) [7-10], the Perturbation Method (PM) [11], and the Method of Weighted Residuals (MWR) [12,13,14], among others. In 

this study, it is assumed that the exact solution for the one-dimensional (1-D) steady-state heat conduction problem is obtained 

using Maple 2021. Furthermore, the root-mean-squared (RMS) error is employed as a key metric to assess the accuracy of the 

proposed approximations. 

    The paper is organized as follows: Section II outlines the basic principles of the Weighted Residuals Method. Section III describes 

the case study, Section IV discusses the results, and Section V provides the conclusions 

 

II. WEIGHTED RESIDUALS METHOD 

   To introduce MWR, let us consider a general boundary value problem whose governing differential equation is presented as 

follows:  

𝐿𝑢(𝑥) = 0, 𝑥 ∈ 𝛺, 

𝑢(𝑥) = 𝑔(𝑥), 𝑥 ∈ 𝛤, 

            (1) 

 

where 𝐿 represents a differential operator, 𝑢 = 𝑢(𝑥) denotes the dependent variable defined within a region Ω with boundary 𝛤, 

and 𝑥 refers to the spatial coordinates. In the Method of Weighted Residuals (MWR), the goal is to approximate the solution 𝑢(𝑥) 

of Equation (1) by using a trial solution 𝑢𝑛(𝑥), which is chosen in a specific way. However, this trial solution generally does not 

satisfy the governing differential equation. As a result, substituting the trial solution into the governing equation leads to a 

residual, represented by 𝑅 [12-14]. To achieve the "best" solution, efforts are made to distribute this residual over the region 𝛺 

by minimizing the integral of the residual across Ω. This can be written as:" 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = ∫ 𝑅𝑑Ω
Ω

. 

            (2) 

 

     The range of possibilities to accomplish this goal can be broadened by ensuring that a weighted residual is minimized over the 

entire region of interest. By applying a weighting function, it becomes possible to attain a minimum value of zero for the weighted 

integral. Letting the weighting functions be denoted by 𝑤, the desired objective of the MWR is then defined as follows 

∫ 𝑤𝑅𝑑Ω = 0.
𝛺

 

            (3) 

 

     The idea of approximating the solution 𝑢(𝑥) of a differential equation using trial solutions is well-established. However, the 

successful application of MWR heavily depends on the proper selection of the trial solution. This choice is powerful because it 

allows for the inclusion of known information about the problem into the trial solution. In lower-order approximations (i.e., for 

small 𝑛 in 𝑢𝑛(𝑥)), this selection can have a significant impact on the accuracy of the results. In higher-order approximations, it can 

affect the convergence of the method [12-14]. Among the various trial solutions used by different researchers, perhaps polynomial 

series such as 

𝑢𝑛(𝑥) =∑𝑐𝑖𝑁(𝑥) =∑𝑐𝑖𝑥
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

. 

 (4) 

 

      Polynomials are the most commonly used choice for this purpose. In equation (4), 𝑐𝑖  are arbitrary constants that must be   

determined during the minimization process outlined in equation (3). The functions 𝑁(𝑥) are preselected and referred to as trial 

functions or shape functions. The widespread preference for polynomials arises mainly from their simplicity in manipulation. 

Additionally, the weighting functions can be chosen in various ways, with each selection corresponding to a different MWR 

criterion [12-14]. 
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Subdomains method. In this process, the Ω domain is divided into 𝑚 smaller subdomains Ω𝑗 , 𝑗 = 1,2,⋯ ,𝑚, which are not 

necessarily disjoint. The weights are selected as follows: 

𝑤𝑗 = {
1, 𝑥 ∈ Ω𝑗 ,

0, 𝑥 ∉ Ω𝑗 ,
 

            (5) 

                             and  

∫ 𝑅𝑑Ω𝑗 = 0, 𝑗 = 1,2,⋯𝑚.
𝛺𝑗

 

            (6) 

 

    As 𝑚 increases, the integral of the differential equation over each subdomain approaches zero. As a result, the equation is 

increasingly satisfied, on average, in progressively smaller domains, eventually tending to zero across the entire domain [12-14]. 

 

Colocation Method. In this method, the weighting functions 𝑤𝑗  are chosen to be the displaced Dirac Delta functions 

 

𝑤𝑗 = 𝛿𝑗 = 𝛿(𝑥 − 𝑥𝑗). 

            (7) 

                    Now (2) is given by 

∫ 𝑤𝑗𝑅𝑑Ω = ∫𝛿𝑗𝑅𝑑Ω = 𝑅𝑗 = 0, 𝑗 = 1,2,⋯𝑚
𝛺𝑗

, 

            (8) 

where 𝑅𝑗   represents the value of 𝑅 evaluated at the point 𝑥𝑗.  As a result, the residual is forced to vanish at m specified 

collocation points, 𝑥𝑗 = 1,2,⋯𝑚.. As 𝑚 increases, the residual vanishes at an increasing number of points, presumably 

approaching zero everywhere. 

 

Least Squares Method. In this method, the weighting functions 𝑤𝑗  are choosen to be  
 

𝑤𝑗 =
𝜕𝑅

𝜕𝑐𝑗
. 

            (9) 

Now Eq. (2) is given by  

 

𝜕

𝜕𝑐𝑗
∫ 𝑅2𝑑Ω = 2∫

𝜕𝑅

𝜕𝑐𝑗
𝑅𝑑Ω = 0, 𝑗 = 1,2,⋯𝑛

𝛺Ω

. 

            (10) 

The integral of the square of the residual is minimized with respect to the undetermined parameters to provide 𝑁 simultaneous 

equations for the 𝑐𝑗
′s. 

 

Method of moments. In this method, the weighting functions 𝑤𝑗  are choosen to be  

 

𝑤𝑗 = 𝑃𝑗(𝑥). 

            (11) 

where 𝑃𝑗(𝑥)are orthogonal polynomials defined over the domain Ω. This approach is especially beneficial in one-  

dimensional problems, where the theory of orthogonal polynomials is well-established. In these problems, the common use  

of weighting functions, denoted by 𝑤(𝑥), results in the following: 

 

∫ 𝑥𝑗𝑅𝑑Ω = 0
Ω

. 

            (12) 
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       The form of Equation (12) led to the term 'method of moments.' However, it is important to note that the set  {𝑤𝑗} = 

 {𝑥𝑗} = {1, 𝑥, 𝑥2, ⋯ } is not orthogonal over the interval 0 ≤ 𝑥 ≤ 1, and generally, better results can be obtained by  

  orthogonalizing them prior to application [12-14]. 
 

Galerkin method. In this method, the weighting functions 𝑤𝑗are choosen to be identical to the shape functions 𝑁𝑗  themselves, 

that is, 

𝑤𝑗 = 𝑁𝑗(𝑥), 𝑗 = 1,2,⋯ ,𝑚. 

            (14) 

Therefore, Eq. (3) is given by 

 

∫ 𝑁𝑗(𝑥)𝑅𝑑Ω = 0, 𝑗 = 1,2,⋯ ,𝑚
𝛺

. 

 

In vector-matrix notation, we have  

 

∫ 𝑵𝑅𝑑Ω = 0,
𝛺

 

            (15) 

 

where 𝑵 = (𝑁1, 𝑁2, ⋯ , 𝑁𝑚)
𝑇.. By leveraging the well-established principle that a continuous function is zero if it is orthogonal to 

every member of a set, it becomes clear that the Galerkin method forces the residual to vanish by ensuring its orthogonality to 

each member of a complete set of basis functions [12-14]. 

 

III. CASE STUDY 

This article presents a case study on one-dimensional (1-D) steady-state heat conduction in a slab with linearly temperature-

dependent thermal conductivity [9]; see Fig. 1. 

 

 

 

 

 

 

 

Figure 1. The 1-D conduction of heat through an insulated slab. 

 

    The non-dimensionalization process for this problem was outlined in [9], which also proposed an approximate solution using 

the Modified Taylor Series Method (MTSM). In the present study, we aim to obtain an approximate solution by employing the 

Method of Weighted Residuals (MWR), specifically the method of moments. The differential equation for this case study is 

expressed as follows: 

𝑑2𝑦

𝑑𝑧2
+ 𝜀𝑦

𝑑2

𝑑𝑧2
+ 𝜀 (

𝑑𝑦

𝑑𝑧
)
2

= 0, 

(16) 

 with boundary conditions given by 

𝑦(0) = 1, 𝑦(1) = 0. 

(17) 

For the case where 𝜀 = 1, the exact solution derived using Maple 2021 is given as: 

 

𝑦𝐸 = −1 + √−3𝑥 + 4. 

(18) 
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Applying the least square method, we have the domain 0 ≤ 𝑥 ≤ 1. Additionally, the proposed solution is expressed as a  

fourth-degree polynomial, given by: 

𝑦 = 𝑒𝑥4 + 𝑑𝑥3 + 𝑐𝑥2 + 𝑏𝑥 + 𝑎. 

(19) 

Substituting the boundary conditions in (19) we have 

𝑦 = 𝑒𝑥4 + 𝑑𝑥3 + 𝑐𝑥2 − (1 + 𝑐 + 𝑑 + 𝑒)𝑥 + 1. 

(20) 

Equation (20) is substituted into Equation (16) to calculate the residual 𝑅. Subsequently, applying Equation (15) to compute 

the partial derivatives with respect to 𝑐, 𝑑, 𝑒, and performing the integration over the domain 0 ≤ 𝑥 ≤ 1, results in three 

equations. The parameters 𝑐, 𝑑, 𝑒must then be determined using a numerical algorithm, such as the Newton-Raphson method, 

Homotopy continuation method [15-17]. 

𝑤1(𝑥) =
𝜕

𝜕𝑐
𝑅(𝑥), 

𝑤2(𝑥) =
𝜕

𝜕𝑑
𝑅(𝑥), 

𝑤3(𝑥) =
𝜕

𝜕𝑒
𝑅(𝑥), 

∫ 𝑤1(𝑥)𝑅(𝑥)𝑑𝑥 = 0
1

0

, 

∫ 𝑤2(𝑥)𝑅(𝑥)𝑑𝑥 = 0
1

0

, 

∫ 𝑤3(𝑥)𝑅(𝑥)𝑑𝑥 = 0
1

0

. 

 (21) 

Solving equation system (21), the solutions are 𝑐 = −0.223097077369708, 𝑑 = 0.197318323576174, 𝑒 =

−0.223481576090948.  By substituting the values of 𝑐, 𝑑, 𝑒 in eq. (20) we have 

 

𝑦𝐺(𝑥) = −0.2234815760915𝑥4 + 0.1973183235762𝑥3 − 0.2230970773697𝑥2 − 0.750739670116𝑥 + 1 

(22) 

The solution obtained with MTSM [19] is given by 

𝑦𝑇(𝑥) = 1 − 0.768425𝑥 − 0.147619245𝑥2 − 

0.056717159𝑥3 − 0.027239301𝑥4. 

(23) 

          Figure 2 provides a comparison between the exact solution (18), the Galerkin method (22), and the Modified Taylor Series 

Method (MTSM) (23). It is observed that the solution obtained using the Galerkin method (22) demonstrates superior 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of exact solutions, Galerkin method vs MTSM. 

. 
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IV. DISCUSSION 

To solve Equation (16), domain was used. The resulting solution, given by Equation (22), is a fourth-degree polynomial. Figure 

2 illustrates a comparison of the absolute errors for Equations (22) and (23). The absolute error of the solution (23), derived using 

the Method of Galerkin, is significantly smaller. It is worth noting that Equation (23) is also a fourth-degree polynomial, determined 

using the Modified Taylor Series Method (MTSM) [9] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.   Absolute error for equations (21) and (22). 

 

To measure the RMS error in the interval defined by the boundary conditions, we will use the formula 

 

𝐸𝑟𝑚𝑠 = √
1

𝑏 − 𝑎
∫ (𝐸(𝑡))

2
𝑑𝑡

𝑏

𝑎

. 

            (24) 

Table 1 displays the RMS error for different values of ε, along with the approximate solutions obtained for each value of ε. As 𝜀 

increases, the RMS error in the approximations also increases. Specifically, when 𝜀 = 1, the RMS error for the solution obtained 

using the Modified Taylor Series Method (MTSM) is 0.00980864863178778. In comparison, the RMS error for the solution in 

Equation (22) is lower. This indicates that the RMS error using the Galerkin method is 0.00143282209653488, which is 6.846 

times smaller than that obtained using the MTSM [9]. Therefore, the solution derived using Galerkin exhibits greater accuracy 

than the solution obtained using MTSM. 

 

Table 1: RMS error for different 𝜀. 

Value 𝜀 Error RMS Polynomial equation obtained 

0.5 0.0001329101394657 𝑦(𝑥) = −0.0402113361866𝑥4 − 0.002630459425739𝑥3

− 0.123834876141𝑥2 − 0.833323328247𝑥 + 1 

1 0.0014328220965349 𝑦(𝑥) = −0.22348157609𝑥4 + 0.1973183236𝑥3 − 0.22309707737𝑥2

− 0.750739670116𝑥 + 1 

1.5 0.003692446990718 𝑦(𝑥) = −0.04015385866137𝑥4 − 0.2578655131126𝑥3

+ 0.02187402939203𝑥2 − 0.7238546576181𝑥 + 1 

 

V. CONCLUSIONS 

     This study employs the Galerkin method to obtain a polynomial solution for the steady-state one-dimensional heat conduction 

problem in a slab, where thermal conductivity varies linearly with temperature, subject to Dirichlet boundary conditions. The 

methodology involves utilizing a trial function integrated over the domain according to a defined procedure. The resulting system 

of equations is formulated in terms of constants, which are determined using numerical techniques such as the Newton-Raphson 

method or homotopy continuation methods. The derived polynomial solution is of fourth degree, demonstrating enhanced 
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accuracy. A comparison with other approaches, including the Modified Taylor Series Method (MTSM) reported in the literature, 

underscores the effectiveness of the Method of Weighted Residuals (MWR) as a reliable and efficient strategy for solving boundary 

value problems, reducing the reliance on more complex and computationally intensive methods. 
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