1Chandrashekharaiah P.S,2Alok Varshney,3Alok Kumar,4Sushant Kangade,5Shivbachan Kushwaha,6Debanjan Sanyal,7Venkatesh Prasad,8Santanu Dasgupta
1,3,5,6Reliance Industries Ltd., Jamnagar Gujarat
2,4,7,8Reliance Industries Ltd., Navi, Mumbai
DOI : https://doi.org/10.47191/ijmra/v6-i2-37Google Scholar Download Pdf
ABSTRACT:
Grass pea (Lathyrus sativus) is an ideal pulse crop for sustainable agriculture due to its superior agronomic traits such as deep penetrating root system, resistance to many biotic and abiotic stresses and rich protein content. Even with these superior agronomic traits, the crop is considered as an orphan due to its lower productivity and presence of neurotoxin, b-N-ozalyl-L-adiamino-propanoic acid (ODAP). By following classical and mutational breeding approaches scientists have developed varieties with lower ODAP (< 0.06 %) and efforts are underway to reduce it to zero. However, till date, there are limited biotechnological research in Lathyrus sativus for targeted crop improvement due to unavailability of genome sequence. The recently published draft genome sequence of European accession (LS007) is an important breakthrough and this would help in developing varieties with lower neuro toxin and higher productivity. In this review, the superior agronomic traits, resilience of the crops to various biotic and abiotic stresses, latest genetic research and biotechnological tools developed in L. sativus, are discussed.
KEYWORDS:Grass pea • Lathyrus sativus • Orphan crops • Neurotoxin • Tissue culture • Molecular and genetic approaches
REFERENCES
1) Abd-El-Moneim AM, Dorrestein BV, Baum M, Ryan J, Bejiga G (2001). Role of ICARDA in improving the nutritional quality and yield potential of grass pea (Lathyrus sativus L.), for subsistence farmers in dry areas, Lathyrus Lathyrism Newsletter 2: 55–58.
2) Almeida NF, Krezdorn N, Rotter B, Winter P, Rubiales D, Patto MCV (2015). Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuper SAGE analysis. Front Plant Science, 6: 178. (It is available in line No 527)
3) Almeida NF, Leitão ST, Krezdorn N, Rotter B, Winter P, Rubiales D, Patto MCV (2014). Allelic diversity in the transcriptomes of contrasting rust-infected genotypes of Lathyrus sativus, a lasting resource for smart breeding. BMC Plant Biology, 14: 376.
4) Al-Snafi AE (2019). Chemical Constituents and Pharmacological Effects of Lathyrus sativus – A Review. IOSR. J Pharmacy, 9: 51-58.
5) Asthana AN (1995). Grass pea cultivation in problem areas: present approaches. In. Arora RK, Mathur PN, Riley KW, Adham Y (Eds.), Lathyrus Genetic Resources in Asia: Proceedings of a Regional Workshop, December, 27–29. Indira Gandhi Agricultural University, Raipur, India 1996. IPGRI Office for South Asia, New Delhi. pp. 43–48.
6) Asthana AN, Dixit GP (1998). Utilization of genetic resources in Lathyrus. In. Mathur PN, Rao VR, Arora RK (Eds.), Lathyrus Genetic Resources Network: Proceedings of a IPGRI-ICARDA-ICAR Regional Working Group Meeting, December 8–10, 1997. National Bureau of Plant Genetic Resources, New Delhi 1998. IPGRI Office for South Asia, New Delhi, India, pp. 64–70.
7) Awasthi R, Kaushal N, Vadez V, Turner NC, Berger J, Siddique KH, et al. (2014). Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct Plant Biol, 41: 1148–1167.
8) Barik DP, Mohapatra U, Chand PK (2005a). High frequency in vitro regeneration of Lathyrus sativus L. Biol Plant, 49: 637-639. (It is available in line No 621)
9) Barik DP, Naik SK, Mohapatra U, Chand PK (2004). High-frequency plant regeneration by in vitro shoot proliferation in cotyledonary node explants of grass pea (Lathyrus sativus l.). In Vitro Cell Dev Biol Plant, 40: 467–470.
10) Barna KS, Mehta SL (1995). Genetic transformation and somatic embryogenesis in Lathyrus sativus L. J Plant Biochem Biotechnol, 4: 67-71.
11) Barpete S, Parmar D, Sharma NC, Shivkumar (2012). Karyotype analysis in grass pea (Lathyrus sativus L.). J Food Legumes, 25: 14-17.
12) Barpete S, Mahmood K, Ozcan SF (2014a). Differential competence for in vitro adventitous rooting of grass pea (Lathyrus sativus L.). Plant Cell Tiss Org Cult, 119: 39–50.
13) Barpete S, Aasim M, Khawar KM, Ozcan SF, Ozcan S (2014b). Preconditioning effect of cytokinins on in vitro multiplication of embryonic node of grass pea (Lathyrus sativus L.) cultivar. Turk J Biol, 38: 485-492.
14) Bermejo JEH, Leon J (Eds.) (1994). Neglected Crops: 1492 from a Different Perspective. Plant Production and Protection Series No. 26. FAO, Rome, Italy. 303-332.
15) Bohra UC, Jha KKPB, Pandey S, Singh NP (2014). Genomics and molecular breeding in lesser-explored pulse crops: current trends and future opportunities. Biotechnol Adv, 32: 1410–1428.
16) Boukecha D, Laouar M, Mekliche-Hanifi L, Harek D (2017). Drought tolerance in some populations of grass pea (Lathyrus sativus L.). Legum Res, 41: 12–19.
17) Bourion V, Isabelle LH, Nathalie MJ, Christophe S (2003). Cold acclimation of winter and spring peas: Carbon partitioning as affected by light intensity. Eur J Agro, 19: 535-548.
18) Boyer JS (1982). Plant productivity and environment. Science, 218: 443-448.
19) Campbell CG (1997). Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops, vol 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome. Available at: https://www.bioversityinternational.org/e-library/publications/detail/grass-pea-lathyrus-sativus-l.
20) Campbell CG, Mehra RB, Agrawal SK, Chen YZ, Abd-El-Moneim AM, Khawaja HIT, Yadov CR, Tay JU, Araya WA (1993). Current status and future strategy in breeding grass pea (Lathyrus sativus). Euphytica, 73: 167–175.
21) Campbell CG, Mehra RB, Agrawal SK, Chen YZ, Abd AM, Moneim EL, Kawaja HIT, Yadav CR, Tay JU, Araya WA (1994). Current status and future strategy in breeding grass pea (Lathyrus sativus). Euphytica, 73: 167-175.
22) Capinera JL (2001). Handbook of Vegetable Pests. Order Lepidoptera by Capinera JL.
23) Çatal MU, Bakoğlu A (2018). In vitro regeneration techniques in the grass pea (Lathyrus sativus L.) plant. Eurasian J Forest Sci, 6: 56-62.
24) Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011). Analysis of the grass pea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry, 72: 1293–1307.
25) Chinnasamy G, Bal AK, McKenzie DB (2005). Fatty acid composition of grass pea (Lathyrus sativus L.) seeds. Lathyrus Lathyrism Newsletter, 4:2-4.
26) Chowdhury MA, Slinkard AE (1999). Linkage of random amplified polymorphic DNA, isozyme and morphological markers in grass pea (Lathyrus sativus). J Agric Sci, 33:389–395.
27) Cocks P, Siddique K, Hanbury C (2000). Lathyrus. A new grain legume. A report for the rural industries Research and development corporation. Rural Industries Research & Development Corporation.
28) Cullis C, Kunert KJ (2017). Unlocking the potential of orphan legumes. J Exp Bot, 68: 1895–1903.
29) Dawson IK, Jaenicke H (2006). Underutilised Plant Species: The Role of Biotechnology. ICUC Position Paper No. 1. International Centre for Underutilised Crops, Colombo, Sri Lanka. 27.
30) Delporte F, Jacquemin JM, Masson P, Watillon B (2012). Insights into the regenerative property of plant cells and their receptivity to transgenesis. Plant Signal Behaviour, 7: 1608–1620.
31) Dempewolf H, Eastwood RJ, Guarino L, Khoury CK, Müller JV, Toll J (2014). Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol Sustain Food Syst, 38: 369–377.
32) Diane N (2016). Forgotten crops may hold key to nutritional security. Available at: https://www.ucdav is.edu/news/forgotten-crops-may-hold-key nutritional-security.
33) Dillen W, Clercq JD, Goossens A, Montagu MV, Angenon G (1997). Agrobacterium-mediated transformation of Phaseolus acutifolius. Theor Appl Genet, 94: 151-158.
34) Dixit GP, Parihar AK, Bohra A, Singh NP (2016). Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. Crop J, 4: 407–416.
35) Duke JA (1981). The quest for tolerant germplasm. In. ASA Special Symposium 32, Crop tolerance to suboptimal land conditions. Am Soc Agron Madison WI,1–61.
36) Dumas-Gaudot E, Amiour N, Weidmann S, Bestel-Corre G, Valot B, Lenogue S, Gianinazzi-Pearson V, Gianinazz S (2004). A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root-fungus interactions. Proteomics, 4: 451–453.
37) Emmrich PMF, AS, Isaac N, Gemy GK, Noel E, Christopher M, Anne E, Darren H, Darren W, Jitender C, Martin T, Jonathan M, Anne W, Rosa C, Jane T, Higgins J, David S, Shiv Kumar, Mundree S, Loose M, Yant L, Martin C, Trevor LW (2020). A draft genome of grass pea (Lathyrus sativus), a resilient diploid legume. Bio Rxiv preprint. Available at: https://doi.org/10.1101/2020.04.24.058164.
38) Enneking D (2011). The nutritive value of grass pea (Lathyrus sativus) and allied species, their toxicity to animals and the role of malnutrition in neuro lathyrism. Food and Chem Toxicol, 49: 694-709.
39) Farooq M, Basra SMA, Wahid A, Ahmad N, Saleem BA (2009). Improving the Drought Tolerance in Rice (Oryza sativa L.) by Exogenous Application of Salicylic Acid. J Agro Crop Sci, 195: 237-246.
40) Farr DF, Rossman AY (2013). Fungal databases, systematic mycology and microbiology laboratory. ARS, USDA. Available at: http://nt.ars-grin.gov/fungaldatabases (accessed June 19, 2013).
41) Foyer CH, Lam HM, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM, Cooper JW, Miller AJ, Kunert K, Vorster J, Cullis C , Ozga JA, Wahlqvist ML, Liang Y, Shou H, Shi K, Yu J (2016). Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2: 16112.
42) Franklin G, Jeyachandran R, Melchias G, Ignacimuthu S (1998). Multiple shoot induction and regeneration of pigeon pea (Cajanus cajan L. Millsp) cv. Vamban 1 from apical and axillary meristem. Curr Sci, 74: 936-937.
43) Gamborg OL, Miller RA, Ojima, K (1968). Nutritional requirement for suspension cultures of soybean root cells. Exp Cell Res, 50: 151–158.
44) Garcia-LuisA, Molina RV, Varona V, Castello´S, Guardiola JL (2006). The influence of explant orientation and contact with the medium on the pathway of shoot regeneration in vitro in epicotyl cuttings of Troyer citrange. Plant Cell Tiss Org Cult, 85: 137–144.
45) Getahun H, Lambein F, Van der Stuyft P (2002). ABO blood groups, grass pea preparation, and neurolathyrism in Ethiopia. Trans Roy Soc Trop Med Hyg, 96: 700–703
46) Ghasem, Karimzadeh, Maryam DG, Aghaalikhani M (2011). Karyotypic and Nuclear DNA Variations in Lathyrus Sativus (Fabaceae). Caryologia, 64 : 42–54.
47) Girma D, Korbu L (2012). Genetic improvement of grass pea (Lathyrus sativus) in Ethiopia: an unfulfilled promise. Plant Breed, 131: 231–236.
48) Gulati A, Jaiwal PK (1994). Plant regeneration from cotyledonary nodes of explants of Mung bean (Vigna radiata (L.) Wilczek). Plant Cell Rep, 13: 523–527.
49) Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005). Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet, 110: 1210–1217.
50) Hanbury CD, Siddique KHM, Galwey NW, Cocks PS (1999). Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean-type environments. Euphytica, 110: 445–460.
51) Hanbury CD, White CL, Mullan BP, Siddique KHM (2000). A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Animal Feed Science and Technology, 87:1–27.
52) Hao X, Yang T, Liu R, Hu J, Burlyaeva MYY, Wang Y, Ren G, Zhang H, Wang D, Chang J, Zong X (2017). An RNA Sequencing Transcriptome Analysis of Grass pea (Lathyrus sativus L.) and Development of SSR and KASP Markers. Front Plant Sci, 8: 1873.
53) Henry J (2003). Review: A brief history of Grass pea and its use in crop improvement. Lathyrus Lathyrism Newsletter 3, December 2003, Colin Hanbury, CLIMA, Australia.
54) Hossain Z, Mandal A K A, Shukla R,Datta S K (2004). NaCl stress: its chromo toxic effects and antioxidant behavior in roots of Chrysanthemum morifolium. Plant Sci, 166: 215–220.
55) https://vikaspedia.in/agriculture/crop-production/package-of-practices/pulses/lathyrus.
56) https://climate.nasa.gov/.
57) Ibitoye DO, Akin-Idowu PE (2010). Marker-assisted selection (MAS): a fast track to increase genetic gain in horticultural crop breeding. Afric J Biotech, 9: 8889–8895.
58) Ikegami F, Ongena G, Sakai R, Itagaki S, Kobori M, Ishikawa T, Kuo YH, Lambein F, Murakoshi I (1993). Biosynthesis of β-(isoxazolin-5-on-2-yl)-alanine, the precursor of the neurotoxin β-N-oxalyl-l-α, β-diaminopropionic acid, by cysteine synthase in Lathyrus sativus. Phytochem, 26: 2699-2704.
59) Jackson MT, Yunus AG (1984). Variation in the grass pea (Lathyrus sativus L.) and wild species. Euphytica, 33: 549-559.
60) Jammulamadaka N, Burgula S, Medisetty R, Ilavazhagan G, Rao SLN, Singh SS (2011). β-N-oxalyl-l-α, β-diaminopropionicacid regulates mitogen-activated protein kinase signaling by down-regulation of phosphatidylethanolamine-binding protein1. J Neurochem, 118: 176–186.
61) Jiang J, Su M, Chen Y, Gao N, Jiao C, Sun Z, Li F, Wang C (2013). Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. Biologia, 68: 231–240.
62) Johansen C, Baldev B, Brouwer JB, Erskine W, Jermyn WA, Li-Juan L, Malik BA, Ahad Miah A, Silim SN (1994). Biotic and abiotic stresses constraining productivity of cool season food legumes in Asia, Africa and Oceania. Expanding the Production and Use of Cool Season Food Legumes, 175-194.
63) Kislev (1989). Google online book on The Origins of Agriculture: An International Perspective and Radiocarbon Dating, Second Edition: An Archaeological Perspective.
64) Kreplak J, Mohammed AM, Petr Capal, PN, Karine L, Gregoire A, Philipp EB (2019). A Reference Genome for Pea Provides Insight into Legume Genome Evolution. Nat Genet, 51: 1411–22.
65) Kumar G, Tripathi R (2009). Influence of heat stress on genome of grass pea (Lathyrus sativus L.). J Environ Biol, 30: 405-8.
66) Kumar S, Bejiga G, Ahmed S, Nakkoul H, Sarker A (2011). Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem Toxicol, 49: 589–600.
67) Kumari V (2000). Stable genotypes of grass pea for mid hill conditions of Himachal Pradesh. Ind J Genet, 60: 399–402.
68) Lambein F, Kuo YH (2009). Lathyrism. Grain Legumes, 54: 8-9
69) Lambein F, Ngudi DD, Kuo YH (2010) Progress in prevention of toxico-nutritional neurodegenerations. Afr Techno Dev forum J 6 (3-4):60-5.
70) Leakey C (1979). Khesari dal—the poisonous pea, Appropr. Technol, 6:15–16.
71) Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD (2019). Plant DNA C-Values Database, Release 7.1. April 2019. Available at: https://data.kew.org/cvalues.
72) Liu F, Jiao C, Bi C, Xu Q, Chen P, Heuberger AL, Krishnan HB (2017). Metabolomics approach to understand mechanism of β- N- Oxalyl-1-α β-diaminopropionic acid (β ODAP) biosynthesis in grass pea (Lathyrus sativus L.). J Agri Food Chem, 65:10206-10213
73) Lucia L, Incoronata G (2013). Development of genomic simple sequence repeat markers from an enriched genomic library of grass pea (Lathyrus sativus L). Plant Breed, 132: 649–653.
74) Macas J, Petr N, Jaume P, Jana Č, Andrea K, Pavel N, Iva F, Jaroslav D, Laura JK, Leitch IJ (2015). In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabaceae. Edited by Andreas Houben. PLOS ONE 10: e0143424. (It is available in line No 460 and 473)
75) Macas J, Neumann P (2007). Ogre elements–a distinct group of plant Ty3/gypsy-like retrotransposons. Gene, 390:108–116.
76) Malathi K, Padmanaban G, Sarma PS (1970). Biosynthesis of β-N-oxalyl-l-α, β-diamino-propionic acid, the Lathyrus sativus neurotoxin. Phytochem, 9: 1603–1610.
77) Malik KA, Ali- Khan ST, Saxena PK (1992). Direct organogenesis and plant regeneration in preconditioned tissue cultures of Lathyrus cicera L., L. ochrus (L.) DC and L. sativus L, Ann Bot, 70: 301-304.
78) Malik KA, Ali-Khan ST, Saxena PK (1993). High-frequency organogenesis from direct seed culture in Lathyrus. Annals of Botany, 72: 629- 637.
79) Marghali S, Touati A, Gharbi M, Sdouga D, Trifi-Farah N (2016). Molecular phylogeny of Lathyrus species: insights from sequence-related amplified polymorphism markers. Genet Mol Res, 31: 15.
80) Mehra RB, Kumari V, Barat GK, Raju DB, Himabindu K (1993). Behavior of neurotoxin content in some crosses of grass pea (Lathyrus sativus L.). Lathyrus Lathyrism Newsl, 2: 8. (It is available in line No 415)
81) Mehra RB, Raju DB, Himabindu K (1995). Evaluation and utilization of Lathyrus sativus collection in India, in: Arora RK, Mathur PN, Riley KW, Adham Y (Eds.), Lathyrus Genetic Resources in Asia: Proceedings of a Regional Workshop, December 27–29, Indira Gandhi Agricultural University, Raipur, India 1996. IPGRI Office for South Asia, New Delhi, India. pp. 37–43.
82) Muehlbauer F, Tullu A (1997). Vicia faba L. Factsheet. Purdue University, Center for New Crops and Plant Products, West Lafayette, USA. Available at: https://hort.purdue.edu/newcrop.
83) Murashige, T, Skoog, F (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol, 15: 473-497.
84) Murti VVS, Seshadri TR, Venkita STA (1964). Neurotoxic compound of the seeds of Lathyrus sativus. Phytochem, 3: 73-78.
85) Nagarajan V, Gopalan C (1968). Variation in the neurotoxin (b-N oxalyl amino alanine) content in Lathyrus sativus samples from Madhya Pradesh. Indian J Med Res, 56: 95–99.
86) Nandini AV, Murray BG, O’Brien IEW, and Hammett KRW (1997). ‘Intra- and Interspecific Variation in Genome Size in Lathyrus (Leguminosae)’. Bot J the Linnean Soc, 125: 359–66.
87) Nerker YS (1976). Mutation studies in Lathyrus sativus. Ind J Genet, 76: 223–229.
88) Neumann, P, Dana P, Macas J (2003). Highly Abundant Pea LTR Retrotransposon Ogre Is Constitutively Transcribed and Partially Spliced. Plant Mol Biol, 53: 399–410.
89) Neumann, P, Koblížková A, Navrátilová A, Macas J (2006). Significant Expansion of Vicia Pannonica Genome Size Mediated by Amplification of a Single Type of Giant Retroelement. Genet, 173: 1047–56.
90) Ochatt S, Durieu P, Jacas L, Pontécaille C (2001). Protoplast, cell and tissue cultures for the biotechnological breeding of grass pea (Lathyrus sativus L.). Lathyrus Lathyrism Newsletter, 2:35-38 (It is available in line No 576)
1) Ochatt SJ, Conreux C, Jacas L (2013). Flow Cytometry Distinction between Species and between Landraces within Lathyrus Species and Assessment of True-to-Typeness of in Vitro Regenerants. Plant Systemat Evol, 75–85.
92) Pandey RL, Sharma RN, Chitale MW (1998). Status of Lathyrus genetic resources in India, In: Mathur PN, Rao VR, Arora RK (Eds.), Lathyrus Genetic Resources Network: Proceedings of a IPGRI-ICARDA-ICAR Regional Working Group Meeting, December 8–10, 1997, National Bureau of Plant Genetic Resources, New Delhi. IPGRI Office for South Asia, New Delhi, India. Pp. 7–14.
93) Pandey RL, Shrivastava P, Geda AK, Sharma RN (2000). Relative contribution of yield components and their relationship with neurotoxin content in grass pea (Lathyrus sativus L.). Ann Agric Res, 21: 11–16. (It is available in line No 415)
94) Pandey RL, Kashyap OP, Sharma RN, Nanda HC, Geda AK, Nair S (2008). Catalogue on Grass Pea (Lathyrus sativus L.) Germplasm. Indira Gandhi Krishi Vishwavidyalaya, Raipur, India.
95) Parida RC, Ghosh PK (2016). Khesari dal from toxic Villain to a Health Promoting Hiro. In: Science Reporter for April 28-29.
96) Piwowarczyk B, Pindel A (2014). Early stages of somatic embryogenesis in root callus of grass pea (Lathyrus sativus L.). J cent Eur Agricult, 15: 209-218.
97) Piwowarczyk B, Tokarz K, Kaminska I (2016a). Responses of grass pea seedlings to salinity stress in in vitro culture conditions. Plant Cell Tiss Org, 124: 227–240.
98) Piwowarczyk B, Pindel A, Muszyńska E (2016b). Callus induction and rhizogenesis in Lathyrus sativus. In: Acta universitatis Agriculturae et Silviculturae Mendelianae Brunensis 64. Available at: http://dx.doi.org/10.11118/actaun201664010123.
99) Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006). Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ, 29: 2143–2152.
100) Roy B (1936). On the somatic chromosomes of Lathyrus. Cytologia, 7: 427.
101) Russell NJ (1984). Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci, 9:108-112. (It is available in line No 252-256)
102) Russell NJ (1990). Cold adaptation of microorganisms. Phil Trans R Soc Lond, 326: 595-611.
103) Saha P, Afrin M, Mohiuddin AKM, Shohael AM (2015). In vitro Regeneration of Grass Pea (Lathyrus sativus L.) J Biol Sci, 4: 1-8.
104) Sahoo, L., Sugla T, Jaiwal PK (2002). In vitro regeneration and genetic transformation of Vigna species. In Jaiwal PK, Singh RP, (Eds.), Biotechnology for the Improvement of Legumes, Kluwer, Dordrecht. 1-48.
105) Saraswat KS (1980). The ancient remains of the crop plants at Atranjikhera. J Indian Bot Soc, 59: 306–319.
106) Sarwar CDM, Malek MA, Sarker A and Hassan MS (1995). Genetic resources of grass pea (Lathyrus sativus L.) in Bangladesh. Pp. 13-19 in Lathyrus Genetic Resources in Asia. Proceedings of a Regional Workshop, 27-29 December 1995, Indira Gandhi Agricultural University, Raipur, India (Arora RK, Mathur PN, Riley KW and Adham Y (Eds.). IPGRI Office for South Asia, New Delhi, India. (It is available in line No 448)
107) Schroeder HE, Schotz AH, Richardson TW, Spencer D, Higgins TJV (1993). Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol, 101: 751– 757.
108) Shiferaw E, Pe E, Porceddu ME, Ponnaiah M (2012). Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers. Mol Breeding, 30: 789-797.
109) Silva P, Geros H (2009). Regulation by salt of vacuolar H+-ATPase and H+- pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav, 4: 718– 726.
110) Sinha RR (1980). Application of plant cell culture in certain pulse crops. Ph.D. Thesis, Calcutta University.
111) Sinha RR (1982). Application of plant cell culture in certain pulse crops. Ph.D. Thesis, Calcutta University. (not present in text)
112) Sinha RR, Das K, Sen SK (1983). Plant regeneration from stem-derived callus of the seed legume Lathyrus sativus L. Plant Cell Tiss Org Cult, 2: 67-76.
113) Sita K, Sehgal A, Bhandari K, Kumar J, Kumar S, Singh S, Kadambot HM, Siddique, Harsha N (2017). Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. J Sci Food Agric, 98: 5134–5141.
114) Skiba RF, Pang EC (2004) Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight. Theor Appl Genet 109 :1726–1735.
115) Sun X, Yang T, Guan J, Ma Y, Jiang J, Cao R, Burlyaeva M, Vishnyakova M, Semenova E, Bulyntsev S, Zong X (2012). Development of 161 novel EST-SSR markers from Lathyrus sativus (Fabaceae). Am J Bot, 99: 379-390.
116) Somayajulu PIN, Barat GK, Prakash S, Mishra BK, Shrivastava VC (1975). Breeding of low toxin containing varieties of Lathyrus sativus. Proc Nutr Soc India, 19: 35–39.
117) Soren KR, Yadav A, Pandey G, Gangwar P, Parihar AK, Bohra A, Dixit GP, Datta S, Singh NP (2015). EST-SSR analysis provides insights about genetic relatedness, population structure and gene flow in grass pea (Lathyrus sativus). Plant Breed, 134: 338–344.
118) Sridhar S, Mohan C, Ranemma M, Reddy SK (2015). Somatic Embryogenesis from Leaf and Internode Explants of Lathyrus sativus L. Int J Pure Appl Biosci, 3: 212-217
119) Stanke, Mario, Oliver K, Irfan G, Alec H, Stephan W, and Morgenstern B (2006). ‘AUGUSTUS: Ab Initio Prediction of Alternative Transcripts’. Nucleic Acids Research, 34 (Web Server issue): W435–39.
120) Suutari M, Laakso S (1994). Microbial fatty acids and thermal adaptation. Crit Rev Microbiol, 20: 285-328. (It is available in line No 256-258)
121) Talukdar D (2009). Recent progress on genetic analysis of novel mutants and aneuploid research in grass pea (Lathyrus sativus L.). Afr J Agric Res, 4: 1549–1559.
122) Talukdar D (2012). An induced glutathione-deficient mutant in grass pea (Lathyrus sativus L.): modifications in plant morphology, alteration in antioxidant activities and increased sensitivity to cadmium. Bioremediat Biodivers Bioavailab, 6: 75–86.
123) Talukdar D (2013). Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress. J Nat Sci Biology and Medicine, 4: 396-402.
124) Talukdar D, Biswas AK (2006). An induced internode mutant in grass pea. In. Das RK, Chatterjee S, Sadhukhan GC (Eds.), Proceedings of the all India congress of cytology and genetics, perspectives in cytology and genetics, vol 12. Hindasia Publishers.
125) Tiwari KR, Campbell CG (1996). Inheritance of neurotoxin (ODAP) content, flower and seed coat colour in grass pea (Lathyrus sativus L.). Euphytica, 91: 195–203.
126) Tokarz B, Krzysztof M, Tokarz, Iwona K (2015). Responses of grass pea seedlings to salinity stress in in vitro culture conditions. Plant Cell Tiss Org Cult, 124.
127) Toker C, Shyam SY (2018). Legumes Cultivars for Stress Environments, November 2018, Book Chapter-Climate Change and Management of Cool Season Grain Legume Crops, 361-376.
128) Townsend CC (1974). Lathyrus sect. Cicercula. Pages 554–558 in Townsend CC and Guest E, eds., Flora of Iraq 3. Ministry of Agriculture and Agrarian Reform, Baghdad.
129) Tripathy SK, Ranjan R, Lenka D, Mohapatra BR,Shovina (2013). Somatic embryogenesis from in vitro cultured internode explants in grass pea (Lathyrus sativus L.). Int Res J Plant Sci, 4: 19-24.
130) Tripathy SK, Ranjan R, Dash S, Bharti R, Lenka D, Sethy YD, Mishra DR, Mohapatra BR, Pal S (2015). Genetic analysis of BOAA content in grass pea (Lathyrus sativus L.) Legume Res, 38: 465–468. (It is available in line No 367-372)
131) Tyagi A, Santha IM, Mehta SL (1995). Molecular Response to Water Stress in Lathyrus sativus. J Plant Biochem Biotechnol, 4: 47-49.
132) Vavilov NI (1951). The origin, variation, immunity and breeding of cultivated plants. Chronica Bot, 13: 13-47.
133) Vaz Patto MC, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006). Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection. Euphytica, 147:133–147. (It is available in line No 241-245)
134) Vondrak T, Laura ÁR, Novák P, Koblížková A, Neumann P, Macas J (2020). ‘Characterization of Repeat Arrays in Ultra-Long Nanopore Reads Reveals Frequent Origin of Satellite DNA from Retrotransposon-Derived Tandem Repeats. The Plant J, 101: 484–500.
135) Wang F, Yang T, Burlyaeva M, Li L, Jiang J, Fang L, Redden R, Zong X (2015). Genetic diversity of grass pea and its relative species revealed by SSR markers. PLoS ONE 10: 0118542.
136) Xu Q, Fengjuan L, Ruihong Q, Jason DG, Chunxiao B, Xin H, Peng C, Krishnan HB (2018). Transcriptomic Profiling of Lathyrus sativus L. Metabolism of β-ODAP, a Neuroexcitatory Amino Acid Associated with Neurodegenerative Lower Limb Paralysis. Plant Mol Biol Report, 36: 5-6.
137) Yang T, Jiang JY, Burlyaeva M, Hu JG, Coyne CJ, Kumar S, Redden R, Sun XL, Wang F, Chang JW, Hao XP, Guan JP, Zong XX (2014). Large-scale microsatellite development in grass pea (Lathyrus sativus L.) an orphan legume of the arid areas BMC. Plant Biol, 14: 65.
138) Zambre M, Chowdhury B, Kuo YH, Van Montagu M, Angenon G, Lambein F (2002). Prolific regeneration of fertile plants from green nodular callus induced from meristematic tissues in Lathyrus sativus L. (Grass pea). Plant Sci, 163:1107-1112.
139) Zhang J, Xing GM, Yan ZY, Li ZX (2003). β-N-oxalyl-l-α, β-diaminopropionic acid protects the activity of glycolate oxidase in Lathyrus sativus seedlings under high light. Russ J Plant Physiol, 50: 618–622.
140) Zhou GK, Kong YZ, Cui KR, Li ZX, Wang YF (2001). Hydroxyl radical scavenging activity of β-N-oxalyl-l-α, β-diaminopropionic acid. Phytochem, 58: 759–762.
VOLUME 06 ISSUE 02 FEBRUARY 2023
There is an Open Access article, distributed under the term of the Creative Commons Attribution – Non Commercial 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and building upon the work for non-commercial use, provided the original work is properly cited.
Our Services and Policies
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected.
The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.
International Journal of Multidisciplinary Research and Analysis will publish 12 monthly online issues per year,IJMRA publishes articles as soon as the final copy-edited version is approved. IJMRA publishes articles and review papers of all subjects area.
Open access is a mechanism by which research outputs are distributed online, Hybrid open access journals, contain a mixture of open access articles and closed access articles.
International Journal of Multidisciplinary Research and Analysis initiate a call for research paper for Volume 08 Issue 01 (January 2025).
PUBLICATION DATES:
1) Last Date of Submission : 26 January 2025 .
2) Article published within a week.
3) Submit Article : editor@ijmra.in or Online
Why with us
1 : IJMRA only accepts original and high quality research and technical papers.
2 : Paper will publish immediately in current issue after registration.
3 : Authors can download their full papers at any time with digital certificate.
The Editors reserve the right to reject papers without sending them out for review.
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected. The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.