1Nensi Rianti, 2Agung Putra, 3Prasetyowati Subchan
1Postgraduate student of Biomedical Sciences, Faculty of Medicine, Universitas Islam Sultan Agung, Jl Kaligawe KM 4 Semarang 50012
2,3Department of Biomedical Sciences, Faculty of Medicine, Universitas Islam Sultan Agung, Jl Kaligawe KM 4 Semarang 50012
DOI : https://doi.org/10.47191/ijmra/v6-i12-24Google Scholar Download Pdf
ABSTRACT:
Hyperglycemic wounds take longer to heal, and high glucose results in an increase in inflammatory cells, a decrease in the angiogenesis process, and the production of growth factors. Antibiotic treatment, surgery, or debridement can increase the risk of amputation. This study aimed to determine the effect of administering gel secretome hypoxia mesenchymal stem cells (SH-MSCs) on the expression of PDGF and IL-1b in Wistar rats with a hyperglycemic wound model. In vivo laboratory experimental research with a Post Test Only Control Group Design. The samples consisted of 30 Wistar rats, divided into 5 groups, namely healthy rats (P1), negative control (P2), positive control with gentamicin (P3), gel secretome dose of 20 μL/rat (P4), and gel secretome dose of 40 μL/rat (P5). MSC secretome hypoxia gel treatment for 10 days, then skin tissue samples were examined using the RTq-PCR method to analyze PDGF and IL-1b gene expression. Analysis of PDGF gene expression showed significant differences between treatment groups using the Kruskal-Wallis test with a result of 0.018 (p<0.05), but there were no significant differences between groups using the Mann-Whitney test (p<0.05). Analysis of IL-1b gene expression showed significant differences between treatment groups using the Kruskal Wallis test with a result of 0.001 (p<0.05), various doses of secretome gel affected reducing IL-1b gene expression using the Mann Whitney test with a result of 0.004 (p<0, 05). The most significant decrease was at a secretome dose of 40 μL/mouse. MSC secretome hypoxia gel at a dose of 40 μL/rat effectively reduces IL-1b gene expression in Wistar rats with a hyperglycemic wound model. However, various doses of MSC secretome hypoxia gel do not significantly increase PDGF gene expression.
KEYWORDS:PDGF, IL-1b, SH-MSCs, hyperglycemic wounds
REFERENCES1) Chen LY, Huang CN, Liao CK, et al. Effects of rutin on wound healing in hyperglycemic rats. Antioxidants. 2020;9(11):1-13. doi:10.3390/antiox9111122
2) Rahmadani S. Aplikasi Topikal Ekstrak Etanol Daun Sirsak (Annona Muricata L.) Pada Luka Tikus Hiperglikemia Setelah Diberi Pakan Lemak Tinggi. http://etd.repository.ugm.ac.id/
3) Wang L, Wang HL, Liu TT, Lan HY. TGF‐beta as a master regulator of diabetic nephropathy. Int J Mol Sci. 2021;22(15). doi:10.3390/ijms22157881
4) Mirza RE, Fang MM, Ennis WJ, Kohl TJ. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 2013;62(7):2579-2587. doi:10.2337/db12-1450
5) Shen S, Wang F, Fernandez A, Hu W. Role of platelet-derived growth factor in type II diabetes mellitus and its complications. Diab Vasc Dis Res. 2020;17(7). doi:10.1177/1479164120942119
6) Dan P, Diabetes P, Tipe M. Perkumpulan Endokrinologi Indonesia.; 2011.
7) Kuntardjo N, Dharmana E, Chodidjah C, Nasihun TR, Putra A. TNF-α-Activated MSC-CM Topical Gel Effective in Increasing PDGF Level, Fibroblast Density, and Wound Healing Process Compared to Subcutaneous Injection Combination. Majalah Kedokteran Bandung. 2019;51(1):1-6. doi:10.15395/mkb.v51n1.1479
8) HS Z, Putra A. Peran Mesenchymal Stem Cells dalam Regulasi PDGF dan Sel Islet pada Diabetes. Jurnal Kedokteran Brawijaya. 2018;30(2):98-102. doi:10.21776/ub.jkb.2018.030.02.4
9) Badr G, Badr BM, Mahmoud MH, Mohany M, Rabah DM, Garraud O. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue. BMC Immunol. 2012;13. doi:10.1186/1471-2172-13-32
10) Kulkarni M, O’Loughlin A, Vazquez R, et al. Use of a fibrin-based system for enhancing angiogenesis and modulating inflammation in the treatment of hyperglycemic wounds. Biomaterials. 2014;35(6):2001-2010. doi:10.1016/j.biomaterials.2013.11.003
11) Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol. 2019;98(5-8). doi:10.1016/j.ejcb.2019.04.002
12) Park SR, Kim JW, Jun HS, Roh JY, Lee HY, Hong IS. Stem Cell Secretome and Its Effect on Cellular Mechanisms Relevant to Wound Healing. Molecular Therapy. 2018;26(2):606-617. doi:10.1016/j.ymthe.2017.09.023
13) Vaidyanathan L. Growth factors in wound healing ⇓ a review. Biomedical and Pharmacology Journal. 2021;14(3):1469-1480. doi:10.13005/bpj/2249
14) Jung H, Son GM, Lee JJ, Park HS. Therapeutic effects of tonsil-derived mesenchymal stem cells in an atopic dermatitis mouse model. In Vivo (Brooklyn). 2021;35(2):845-857. doi:10.21873/INVIVO.12325
15) Bormann D, Gugerell A, Ankersmit HJ, Mildner M. Therapeutic Application of Cell Secretomes in Cutaneous Wound Healing. Journal of Investigative Dermatology. 2023;143(6):893-912. doi:10.1016/j.jid.2023.02.019
16) Karuniawan A, Andrie M, Riza H, Studi Farmasi P, Kedokteran F, Tanjungpura Pontianak U. Uji Efek Penyembuhan Luka Sayat Salep Ekstrak Ikan Toman (Channa Micropeltes) Secara Topikal Pada Tikus Yang Diinduksi Streptozotocin.; 2016.
17) Park SR, Kim JW, Jun HS, Roh JY, Lee HY, Hong IS. Stem Cell Secretome and Its Effect on Cellular Mechanisms Relevant to Wound Healing. Molecular Therapy. 2018;26(2):606-617. doi:10.1016/j.ymthe.2017.09.023
18) Ahmadi H, Amini A, Fadaei Fathabady F, et al. Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Res Ther. 2020;11(1). doi:10.1186/s13287-020-01967-2
19) Hu W, Zhang Y, Wang L, et al. Bone morphogenic protein 4-smad-induced upregulation of platelet-derived growth Factor AA impairs endothelial function. Arterioscler Thromb Vasc Biol. 2016;36(3):553-560. doi:10.1161/ATVBAHA.115.306302
20) Mulholland EJ. Electrospun Biomaterials in the Treatment and Prevention of Scars in Skin Wound Healing. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.00481
21) Manzat Saplacan RM, Balacescu L, Gherman C, et al. The Role of PDGFs and PDGFRs in Colorectal Cancer. Mediators Inflamm. 2017;2017. doi:10.1155/2017/4708076
22) Farooqi AA, Siddik ZH. Platelet-derived growth factor (PDGF) signalling in cancer: Rapidly emerging signalling landscape. Cell Biochem Funct. 2015;33(5):257-265. doi:10.1002/cbf.3120
23) Folestad E, Kunath A, Wågsäter D. PDGF-C and PDGF-D signaling in vascular diseases and animal models. Mol Aspects Med. 2018;62:1-11. doi:10.1016/j.mam.2018.01.005
24) Tan JL, Lash B, Karami R, et al. Restoration of the healing microenvironment in diabetic wounds with matrix-binding IL-1 receptor antagonist. Commun Biol. 2021;4(1). doi:10.1038/s42003-021-01913-9
25) Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv Wound Care (New Rochelle). 2018;7(7):209-231. doi:10.1089/wound.2017.0761
26) Rea IM, Gibson DS, McGilligan V, McNerlan SE, Denis Alexander H, Ross OA. Age and age-related diseases: Role of inflammation triggers and cytokines. Front Immunol. 2018;9(APR). doi:10.3389/fimmu.2018.00586
27) Zhang X, Dai J, Li L, Chen H, Chai Y. NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages. J Diabetes Res. 2017;2017. doi:10.1155/2017/5281358
28) Dai J, Shen J, Chai Y, Chen H. IL-1 β Impaired Diabetic Wound Healing by Regulating MMP-2 and MMP-9 through the p38 Pathway. Mediators Inflamm. 2021;2021. doi:10.1155/2021/6645766
29) Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014;63(3):1103-1114. doi:10.2337/db13-0927
30) Liu Y, Liu Y, Deng J, Li W, Nie X. Fibroblast Growth Factor in Diabetic Foot Ulcer: Progress and Therapeutic Prospects. Front Endocrinol (Lausanne). 2021;12. doi:10.3389/fendo.2021.744868
31) Boniakowski AE, Kimball AS, Joshi A, et al. Murine macrophage chemokine receptor CCR2 plays a crucial role in macrophage recruitment and regulated inflammation in wound healing. Eur J Immunol. 2018;48(9):1445-1455. doi:10.1002/eji.201747400
32) Liu D, Yang P, Gao M, et al. NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. Clin Sci. 2019;133(4):565-582. doi:10.1042/CS20180600
33) Putra A, Pertiwi D, Milla MN, et al. Hypoxia-preconditioned MSCs have superior effect in ameliorating renal function on acute renal failure animal model. Open Access Maced J Med Sci. 2019;7(3):305-310. doi:10.3889/oamjms.2019.049
34) Vasanthan J, Gurusamy N, Rajasingh S, et al. Role of human mesenchymal stem cells in regenerative therapy. Cells. 2021;10(1):1-14. doi:10.3390/cells10010054
35) Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther. 2019;10(1). doi:10.1186/s13287-019-1165-5
36) Putra A, Ridwan FB, Putridewi AI, et al. The role of tnf-α induced mscs on suppressive inflammation by increasing tgf-β and il-10. Open Access Maced J Med Sci. 2018;6(10):1779-1783. doi:10.3889/oamjms.2018.404
37) Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. doi:10.1016/j.isci
38) Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes. Indian Journal of Clinical Biochemistry. 2018;33(1):46-52. doi:10.1007/s12291-017-0641-x
39) Lotfinia M, Lak S, Ghahhari NM, et al. Full Length Iranian Hypoxia Pre-Conditioned Embryonic Mesenchymal Stem Cell Secretome Reduces IL-10 Production by Peripheral Blood Mononuclear Cells. Biomed J. 2017;21(1):24-31. doi:10.6091/.21.1.24
40) Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014;12(1). doi:10.1186/s12967-014-0260-8
41) Drawina P, Putra A, Nasihun T, Prajoko YW, Dirja BT, Amalina ND. Increased serial levels of platelet-derived growth factor using hypoxic mesenchymal stem cell-conditioned medium to promote closure acceleration in a full-thickness wound. Indones J Biotechnol. 2022;27(1):36-42. doi:10.22146/ijbiotech.64021
42) Meng X, Grötsch B, Luo Y, et al. Hypoxia-inducible factor-1α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat Commun. 2018;9(1). doi:10.1038/s41467-017-02683-x
43) Syafril S. Pathophysiology diabetic foot ulcer. In: IOP Conference Series: Earth and Environmental Science. Vol 125. Institute of Physics Publishing; 2018. doi:10.1088/1755-1315/125/1/012161
44) Alavi A, Sibbald RG, Mayer D, et al. Diabetic foot ulcers: Part I. Pathophysiology and prevention. J Am Acad Dermatol. 2014;70(1):1.e1-1.e18. doi:10.1016/j.jaad.2013.06.055
45) Aumiller WD, Dollahite HA. Pathogenesis and management of diabetic foot ulcers. J Am Acad Physician Assist. 2015;28(5):28-34. doi:10.1097/01.JAA.0000464276.44117.b1
46) Noor S, Zubair M, Ahmad J. Diabetic foot ulcer - A review on pathophysiology, classification and microbial etiology. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2015;9(3):192-199. doi:10.1016/j.dsx.2015.04.007
47) Chantelau EA. Nociception at the diabetic foot, an uncharted territory. World J Diabetes. 2015;6(3):391. doi:10.4239/wjd.v6.i3.391
48) Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: Clinical review. J Tissue Viability. 2016;25(4):229-236. doi:10.1016/j.jtv.2016.06.005
49) Wang CJ, Ko JY, Kuo YR, Yang YJ. Molecular changes in diabetic foot ulcers. Diabetes Res Clin Pract. 2011;94(1):105-110. doi:10.1016/j.diabres.2011.06.016
50) Blakytny R, Jude EB. Altered molecular mechanisms of diabetic foot ulcers. International Journal of Lower Extremity Wounds. 2009;8(2):95-104. doi:10.1177/1534734609337151
51) Das S, Majid M, Baker AB. Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomater. 2016;42:56-65. doi:10.1016/j.actbio.2016.07.001
52) Wang L, Wang F, Zhao L, et al. Mesenchymal stem cells coated by the extracellular matrix promote wound healing in diabetic rats. Stem Cells Int. 2019;2019. doi:10.1155/2019/9564869
53) Okonkwo UA, Dipietro LA. Diabetes and wound angiogenesis. Int J Mol Sci. 2017;18(7). doi:10.3390/ijms18071419
54) Kartika RW, Alwi I, Suyatna FD, et al. The Role Of Vegf, Pdgf And Il-6 On Diabetic Foot Ulcer After Platelet Rich Fibrin Þ Hyaluronic Therapy. Heliyon. 2021;7(9). doi:10.1016/j.heliyon.2021.e07934
55) MacLeod AS, Mansbridge JN. The Innate Immune System in Acute and Chronic Wounds. Adv Wound Care (New Rochelle). 2016;5(2):65-78. doi:10.1089/wound.2014.0608
56) Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules. 2021;11(5). doi:10.3390/biom11050700
57) Ormazabal V, Nova-Lampeti E, Rojas D, et al. Secretome from Human Mesenchymal Stem Cells-Derived Endothelial Cells Promotes Wound Healing in a Type-2 Diabetes Mouse Model. Int J Mol Sci. 2022;23(2). doi:10.3390/ijms23020941
58) Federer WT. Experimental Design Theory And Application, Third Edition,. Oxford and IBH Publishing Co, New Delhi Bombay Calcuta. Published online 1977.
59) Beserra FP, Vieira AJ, Gushiken LFS, et al. Lupeol, a dietary triterpene, enhances wound healing in streptozotocin-induced hyperglycemic rats with modulatory effects on inflammation, oxidative stress, and angiogenesis. Oxid Med Cell Longev. 2019;2019. doi:10.1155/2019/3182627
60) Widyaningsih W. Pengaruh Pemberian Sekretom Sel Punca Mesenkimal Hipoksia Terhadap Kadar C-Peptide, IL-6, Dan Polarisasi Makrofag Tipe-2 (Studi Eksperimental in Vivo Pada Tikus Obesitas Diabetes Melitus Tipe 2) (Doctoral Dissertation, Universitas Islam Sultan Agung (Indonesia)).; 2022.
61) HS Z, Putra A. Peran Mesenchymal Stem Cells dalam Regulasi PDGF dan Sel Islet pada Diabetes. Jurnal Kedokteran Brawijaya. 2018;30(2):98-102. doi:10.21776/ub.jkb.2018.030.02.4
62) Muhar AM, Putra A, Warli SM, Munir D. Hypoxia-mesenchymal stem cells inhibit intra-peritoneal adhesions formation by upregulation of the il-10 expression. Open Access Maced J Med Sci. 2019;7(23):3937-3943. doi:10.3889/oamjms.2019.713
63) Putra A. Basic Molecular Stem Cell Semarang: Unisulla Press.; 2019.
64) Matluobi D, Araghi A, Maragheh BFA, et al. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations. Microvasc Res. 2018;115:20-27. doi:10.1016/j.mvr.2017.08.003
65) Kehl D, Generali M, Mallone A, et al. Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. NPJ Regen Med. 2019;4(1). doi:10.1038/s41536-019-0070-y
Volume 06 Issue 12 December 2023
There is an Open Access article, distributed under the term of the Creative Commons Attribution – Non Commercial 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and building upon the work for non-commercial use, provided the original work is properly cited.
Our Services and Policies
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected.
The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.
International Journal of Multidisciplinary Research and Analysis will publish 12 monthly online issues per year,IJMRA publishes articles as soon as the final copy-edited version is approved. IJMRA publishes articles and review papers of all subjects area.
Open access is a mechanism by which research outputs are distributed online, Hybrid open access journals, contain a mixture of open access articles and closed access articles.
International Journal of Multidisciplinary Research and Analysis initiate a call for research paper for Volume 08 Issue 01 (January 2025).
PUBLICATION DATES:
1) Last Date of Submission : 26 January 2025 .
2) Article published within a week.
3) Submit Article : editor@ijmra.in or Online
Why with us
1 : IJMRA only accepts original and high quality research and technical papers.
2 : Paper will publish immediately in current issue after registration.
3 : Authors can download their full papers at any time with digital certificate.
The Editors reserve the right to reject papers without sending them out for review.
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected. The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.