• editor@ijmra.in
  • ISSN[Online] : 2643-9875  ||  ISSN[Print] : 2643-9840

Volume 06 Issue 12 December 2023

Effect of Gel Secretome Hypoxia Mesenchymal Stem Cell on Expression of TGF- β and IL-6 (In Vivo Experimental Study in Male Rats of Wistar Strains Model Hyperglycemic Wounds)
1Yudhi Tities Kusuma, 2Prasetyowati Subchan, 3Agung Putra
1Postgraduate student of Biomedical Sciences, Faculty of Medicine, Universitas Islam Sultan Agung, Jl Kaligawe KM 4 Semarang 50012
2,3Department of Biomedical Sciences, Faculty of Medicine, Universitas Islam Sultan Agung, Jl Kaligawe KM 4 Semarang 50012
DOI : https://doi.org/10.47191/ijmra/v6-i12-23

Google Scholar Download Pdf
ABSTRACT:

Wounds disrupt normal skin structure, function, and shape. The healing process is hampered by hyperglycemia or high blood glucose levels resulting in wounds healing longer, resulting in an extension of the healing phase. The aim of this study was to determine the effect of administering hypoxic MSC secretome gel on the expression of the TGF-β and IL-6 genes in male white Wistar rats with a hyperglycemic injury model. True experimental in vivo research with a Post Test Only Control Group design. Consisting of 5 groups, namely the healthy mice group (K1), the base gel treated mice group (K2), the standard intervention treatment group (positive control) with gentamicin (K3), the secretome treatment and intervention group with a dose of 100 μL (K4) and a dose of 200 μL (K5). The research sample consisted of 30 male Wistar rats. Mouse skin tissue was analyzed on day 46 after termination to see the expression of the TGF-β and IL-6 genes using the quantitative RTq-PCR method. There was a significant difference in TGF-β gene expression between treatment groups using the One-way Anova test 0.024 (p < 0.05), various doses of MSC hypoxic secretome gel had an effect on increasing TGF-β gene expression using Tamhane's Post Hoc test (p < 0.05 ) showed the highest increase at a dose of 200 μL compared to the others, while IL-6 gene expression had a significant difference with the Kruskal-Wallis test 0.001 (p < 0.05), using MSC hypoxia secretome gel had an effect on decreasing IL-6 gene expression with results lowest at a dose of 200 μL. MSC hypoxic secretome gel at a dose of 200 μL/BW effectively increased TGF-β gene expression and decreased IL-6 gene expression in male white Wistar rats with a hyperglycemic injury model.

KEYWORDS:

Hyperglycemic wounds, MSC hypoxic secretome gel, TGF-β, IL-6

REFERENCES
1) Purnama H, Ratnawulan S. Review Sistematik: Proses Penyembuhan Dan Perawatan Luka. Farmaka. 2017;15(2):251-6.

2) Kewuta MNN, Dada IKA, Jayawardhita AAG. Based On Signs Of Inflammation and The Presence Of Scabs Leaf Extract Of Muntingia Calaburate The Healing Of Incisions Wound In Hyperglicemic Mice. Indonesia Medicus Veterinus. 2021;10(1):30-40. doi:10.19087/imv.2021.10.1.30

3) Mao X, Li Z, Li B, Wang H. Baicalin regulates mRNA expression of VEGF-c, Ang-1/Tie2, TGF-β and Smad2/3 to inhibit wound healing in streptozotocin-induced diabetic foot ulcer rats. J Biochem Mol Toxicol. 2021;35(11). doi:10.1002/jbt.22893

4) Mintyatus Hazad E, Wibisono N, Sri Damayanti D. Efek Kombinasi Ekstrak Infusa Sambiloto, Salam, Kayu Manis , Dan Temulawak Terhadap Kadar Nitrit Oksida Jaringan Arteri Ekor Tikus Wistar Jantan Model Hiperglikemia.; 2019.

5) Yazdanpanah L, Shahbazian H, Nazari I, et al. Incidence and risk factors of diabetic foot ulcer: A population-based diabetic foot cohort (ADFC study)-two-year follow-up study. Int J Endocrinol. 2018;2018. doi:10.1155/2018/7631659

6) Huda N, Febriyanti E, Laura D De. Edukasi Berbasis Nutrisi dan Budaya pada Penderita Luka Kronis. Jurnal Pendidikan Keperawatan Indonesia . 2018;4(1):1. doi:10.17509/jpki.v4i1.12307

7) Adil M, Khan RA, Kalam A, et al. Effect of anti-diabetic drugs on bone metabolism: Evidence from preclinical and clinical studies. Pharmacological Reports. 2017;69(6):1328-1340. doi:10.1016/j.pharep.2017.05.008

8) Goswami S, Kandhare A, Zanwar AA, et al. Oral L-glutamine administration attenuated cutaneous wound healing in Wistar rats. Int Wound J. 2016;13(1):116-124. doi:10.1111/iwj.12246

9) Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol. 2019;98(5-8). doi:10.1016/j.ejcb.2019.04.002

10) Fui LW, Lok MPW, Govindasamy V, Yong TK, Lek TK, Das AK. Understanding the multifaceted mechanisms of diabetic wound healing and therapeutic application of stem cells conditioned medium in the healing process. J Tissue Eng Regen Med. 2019;13(12):2218-2233. doi:10.1002/term.2966

11) Wulandari P, Hutagalung MR, Perdanakusuma DS. Deteksi Kadar Transforming Growth Factor (Tgf-Β) Pada Luka Akut.; 2021.

12) Refiani E, Maliza R, Fitri H, Lestari P. Therapeutic Effects of Medicinal Plants on Diabetic Foot Ulcers: A Systematic Review. Journal of Agromedicine and Medical Sciences. 2021;7(3):167. doi:10.19184/ams.v7i3.24244

13) Kuntardjo N, Dharmana E, Chodidjah C, Nasihun TR, Putra A. TNF-α-Activated MSC-CM Topical Gel Effective in Increasing PDGF Level, Fibroblast Density, and Wound Healing Process Compared to Subcutaneous Injection Combination. Majalah Kedokteran Bandung. 2019;51(1):1-6. doi:10.15395/mkb.v51n1.1479

14) Jung H, Son GM, Lee JJ, Park HS. Therapeutic effects of tonsil-derived mesenchymal stem cells in an atopic dermatitis mouse model. In Vivo (Brooklyn). 2021;35(2):845-857. doi:10.21873/INVIVO.12325

15) Bormann D, Gugerell A, Ankersmit HJ, Mildner M. Therapeutic Application of Cell Secretomes in Cutaneous Wound Healing. Journal of Investigative Dermatology. 2023;143(6):893-912. doi:10.1016/j.jid.2023.02.019

16) Ormazabal V, Nova-Lampeti E, Rojas D, et al. Secretome from Human Mesenchymal Stem Cells-Derived Endothelial Cells Promotes Wound Healing in a Type-2 Diabetes Mouse Model. Int J Mol Sci. 2022;23(2). doi:10.3390/ijms23020941

17) Lee EG, Luckett-Chastain LR, Calhoun KN, Frempah B, Bastian A, Gallucci RM. Interleukin 6 function in the skin and isolated keratinocytes is modulated by hyperglycemia. J Immunol Res. 2019;2019. doi:10.1155/2019/5087847

18) Fromer MW, Chang S, Hagaman ALR, et al. The endothelial cell secretome as a novel treatment to prime adipose-derived stem cells for improved wound healing in diabetes. J Vasc Surg. 2018;68(1):234-244. doi:10.1016/j.jvs.2017.05.094

19) Park SR, Kim JW, Jun HS, Roh JY, Lee HY, Hong IS. Stem Cell Secretome and Its Effect on Cellular Mechanisms Relevant to Wound Healing. Molecular Therapy. 2018;26(2):606-617. doi:10.1016/j.ymthe.2017.09.023

20) Waters R, Subham S, Pacelli S, Modaresi S, Chakravarti AR, Paul A. Development of MicroRNA-146a-Enriched Stem Cell Secretome for Wound-Healing Applications. Mol Pharm. 2019;16(10):4302-4312. doi:10.1021/acs.molpharmaceut.9b00639

21) Meng XM, Tang PMK, Li J, Lan HY. TGF-ß/Smad signaling in renal fibrosis. Front Physiol. 2015;6(MAR). doi:10.3389/fphys.2015.00082

22) Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017;9(2). doi:10.1101/cshperspect.a022129

23) Wang L, Wang HL, Liu TT, Lan HY. TGF‐beta as a master regulator of diabetic nephropathy. Int J Mol Sci. 2021;22(15). doi:10.3390/ijms22157881

24) Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med. 2021;53(7):1116-1123. doi:10.1038/s12276-021-00649-0

25) Shen TNY, Kanazawa S, Kado M, et al. Interleukin-6 stimulates Akt and p38 MAPK phosphorylation and fibroblast migration in non-diabetic but not diabetic mice. PLoS One. 2017;12(5). doi:10.1371/journal.pone.0178232

26) Wright HL, Cross AL, Edwards SW, Moots RJ. Effects of IL-6 and IL-6 blockade on neutrophil function in vitro and in vivo. Rheumatology (United Kingdom). 2014;53(7):1321-1331. doi:10.1093/rheumatology/keu035

27) Das LM, Rosenjack J, Au L, et al. Hyper-inflammation and skin destruction mediated by rosiglitazone activation of macrophages in IL-6 deficiency. Journal of Investigative Dermatology. 2015;135(2):389-399. doi:10.1038/jid.2014.375

28) Cox AA, Sagot Y, Hedou G, et al. Low-dose pulsatile interleukin-6 as a treatment option for diabetic peripheral neuropathy. Front Endocrinol (Lausanne). 2017;8(MAY). doi:10.3389/fendo.2017.00089

29) Kong M, Xie K, Lv M, et al. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomedicine and Pharmacotherapy. 2021;133. doi:10.1016/j.biopha.2020.110975

30) Punca S, Karakteristik :, Dan P, et al. Tinjauan Pustaka. Vol 22.; 2016.

31) Widowati W, Rahma D, Widyanto M. Sel Punca Sebagai Transformasi Alternatif Terapi.; 2013.

32) Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014;12(1). doi:10.1186/s12967-014-0260-8

33) Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage. 2016;24(12):2135-2140. doi:10.1016/j.joca.2016.06.022

34) Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair. Int J Mol Sci. 2020;21(19):1-15. doi:10.3390/ijms21197038

35) Weiss ARR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;10(JUN). doi:10.3389/fimmu.2019.01191

36) Ezhilarasu H, Vishalli D, Dheen ST, Bay BH, Kumar Srinivasan D. Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials. 2020;10(6):1-29. doi:10.3390/nano10061234

37) Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: Clinical review. J Tissue Viability. 2016;25(4):229-236. doi:10.1016/j.jtv.2016.06.005

38) Mouritzen M V., Petkovic M, Qvist K, et al. Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota. Mol Ther Methods Clin Dev. 2021;20:726-739. doi:10.1016/j.omtm.2021.02.008

39) Jung SW, Moon JY. The role of inflammation in diabetic kidney disease. Korean Journal of Internal Medicine. 2021;36(4):753-766. doi:10.3904/kjim.2021.174

40) MacLeod AS, Mansbridge JN. The Innate Immune System in Acute and Chronic Wounds. Adv Wound Care (New Rochelle). 2016;5(2):65-78. doi:10.1089/wound.2014.0608

41) Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences. 2016;73(20):3861-3885. doi:10.1007/s00018-016-2268-0

42) Beserra FP, Vieira AJ, Gushiken LFS, et al. Lupeol, a dietary triterpene, enhances wound healing in streptozotocin-induced hyperglycemic rats with modulatory effects on inflammation, oxidative stress, and angiogenesis. Oxid Med Cell Longev. 2019;2019. doi:10.1155/2019/3182627

43) Wechsler ME, Rao V V., Borelli AN, Anseth KS. Engineering the MSC Secretome: A Hydrogel Focused Approach. Adv Healthc Mater. 2021;10(7). doi:10.1002/adhm.202001948

44) Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: Influencing therapeutic potential by cellular pre-conditioning. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.02837

45) Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2. doi:10.1038/sigtrans.2017.23

46) Putra A, Alif I, Nazar MA, et al. IL-6 and IL-8 Suppression by Bacteria-adhered Mesenchymal Stem Cells Co-cultured with PBMCs under TNF-α Exposure. In: Scitepress; 2021:311-317. doi:10.5220/0010491903110317

47) Johnson BZ, Stevenson AW, Prêle CM, Fear MW, Wood FM. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8(5). doi:10.3390/BIOMEDICINES8050101

48) Porro C, Cianciulli A, Panaro MA. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules. 2020;10(7):1-15. doi:10.3390/biom10071017

49) Shi GJ, Shi GR, Zhou J yin, et al. Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomedicine and Pharmacotherapy. 2018;101:510-527. doi:10.1016/j.biopha.2018.02.105

50) García de Vinuesa A, Abdelilah-Seyfried S, Knaus P, Zwijsen A, Bailly S. BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev. 2016;27:65-79. doi:10.1016/j.cytogfr.2015.12.005

51) Liu Y, Liu Y, Deng J, Li W, Nie X. Fibroblast Growth Factor in Diabetic Foot Ulcer: Progress and Therapeutic Prospects. Front Endocrinol (Lausanne). 2021;12. doi:10.3389/fendo.2021.744868

52) Peng J, Zhao H, Tu C, et al. In situ hydrogel dressing loaded with heparin and basic fibroblast growth factor for accelerating wound healing in rat. Materials Science and Engineering C. 2020;116. doi:10.1016/j.msec.2020.111169

53) Kartika RW, Alwi I, Suyatna FD, et al. The Role Of Vegf, Pdgf And Il-6 On Diabetic Foot Ulcer After Platelet Rich Fibrin Þ Hyaluronic Therapy. Heliyon. 2021;7(9). doi:10.1016/j.heliyon.2021.e07934

54) Kowluru A. Oxidative stress in cytokine-induced dysfunction of the pancreatic beta cell: Known knowns and known unknowns. Metabolites. 2020;10(12):1-17. doi:10.3390/metabo10120480

55) Jiang CM, Liu J, Zhao JY, et al. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells. J Dent Res. 2015;94(1):69-77. doi:10.1177/0022034514557671

56) Liang X, Lin F, Ding Y, et al. Conditioned medium from induced pluripotent stem cell-derived mesenchymal stem cells accelerates cutaneous wound healing through enhanced angiogenesis. Stem Cell Res Ther. 2021;12(1). doi:10.1186/s13287-021-02366-x

57) Ormazabal V, Nova-Lampeti E, Rojas D, et al. Secretome from Human Mesenchymal Stem Cells-Derived Endothelial Cells Promotes Wound Healing in a Type-2 Diabetes Mouse Model. Int J Mol Sci. 2022;23(2). doi:10.3390/ijms23020941

58) Li D, Wu N. Mechanism and application of exosomes in the wound healing process in diabetes mellitus. Diabetes Res Clin Pract. 2022;187. doi:10.1016/j.diabres.2022.109882

59) Wang-Fischer Y, Garyantes T. Improving the reliability and utility of streptozotocin-induced rat diabetic model. J Diabetes Res. 2018;2018. doi:10.1155/2018/8054073

60) Widyaningsih W. Pengaruh Pemberian Sekretom Sel Punca Mesenkimal Hipoksia Terhadap Kadar C-Peptide, IL-6, Dan Polarisasi Makrofag Tipe-2 (Studi Eksperimental in Vivo Pada Tikus Obesitas Diabetes Melitus Tipe 2) (Doctoral Dissertation, Universitas Islam Sultan Agung (Indonesia)).; 2022.

61) Matluobi D, Araghi A, Maragheh BFA, et al. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations. Microvasc Res. 2018;115:20-27. doi:10.1016/j.mvr.2017.08.003

62) Kehl D, Generali M, Mallone A, et al. Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. NPJ Regen Med. 2019;4(1). doi:10.1038/s41536-019-0070-y

63) Longo M, Zatterale F, Naderi J, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019;20(9). doi:10.3390/ijms20092358

64) Baratawidjaja KG, Rengganis I. Imunologi dasar edisi ke-10. Jakarta: Fakultas Kedokteran Universitas Indonesia. Published online 2014.

65) Golan K, Kumari A, Kollet O, et al. Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance. Cell Stem Cell. 2018;23(4):572-585.e7. doi:10.1016/j.stem.2018.08.002

66) Pan XH, Huang X, Ruan GP, et al. Umbilical cord mesenchymal stem cells are able to undergo differentiation into functional islet-like cells in type 2 diabetic tree shrews. Mol Cell Probes. 2017;34:1-12. doi:10.1016/j.mcp.2017.04.002

67) Cevey ÁC, Penas FN, Alba Soto CD, Mirkin GA, Goren NB. IL-10/STAT3/SOCS3 axis is involved in the anti-inflammatory effect of benznidazole. Front Immunol. 2019;10(JUN). doi:10.3389/fimmu.2019.01267

68) Yolanda MM. Adult Stem Cell Therapy in Chronic Wound Healing. J Stem Cell Res Ther. 2014;04(01). doi:10.4172/2157-7633.1000162
Volume 06 Issue 12 December 2023

There is an Open Access article, distributed under the term of the Creative Commons Attribution – Non Commercial 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and building upon the work for non-commercial use, provided the original work is properly cited.


Our Services and Policies

Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected.

The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.

International Journal of Multidisciplinary Research and Analysis will publish 12 monthly online issues per year,IJMRA publishes articles as soon as the final copy-edited version is approved. IJMRA publishes articles and review papers of all subjects area.

Open access is a mechanism by which research outputs are distributed online, Hybrid open access journals, contain a mixture of open access articles and closed access articles.

International Journal of Multidisciplinary Research and Analysis initiate a call for research paper for Volume 07 Issue 05 (May 2024).

PUBLICATION DATES:
1) Last Date of Submission : 26 May 2024 .
2) Article published within a week.
3) Submit Article : editor@ijmra.in or Online

Why with us

International Journal of Multidisciplinary Research and Analysis is better then other journals because:-
1 : IJMRA only accepts original and high quality research and technical papers.
2 : Paper will publish immediately in current issue after registration.
3 : Authors can download their full papers at any time with digital certificate.

The Editors reserve the right to reject papers without sending them out for review.

Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected. The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.

Indexed In
Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar