1Ruby Ahmed,2Farman Ali
1,2Dept of Applied Chemistry ZHCET, AMU, Aligarh
DOI : https://doi.org/10.47191/ijmra/v6-i3-33Google Scholar Download Pdf
ABSTRACT:
Literature surveys of fluorophores for sensing nitroaromatic compounds, during past ten years have been done. Fluorophores have been classified in various categories, based on their structure and their mechanism of sensing is discussed.
KEYWORDS:Picric acid, Fluorophores, sensors, Limit of detection, KSV
REFERENCES
1) Toal, S. J. & Trogler, W. C. Polymer sensors for nitroaromatic explosives detection. 2871–2883 (2006) doi:10.1039/b517953j.
2) Santharam Roja, S., Shylaja, A. & Kumar, R. Phenothiazine‐Tethered 2‐Aminopyridine‐3‐carbonitrile: Fluorescent Turn‐Off Chemosensor for Fe 3+ Ions and Picric Acid . ChemistrySelect 5, 2279–2283 (2020).
3) Lin, Q. et al. Polymer Chemistry. 253–259 (2019) doi:10.1039/c8py01299g.
4) Li, C. et al. ScienceDirect Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing. J. Environ. Sci. 1–12 (2019) doi:10.1016/j.jes.2019.11.006.
5) Naaz, F., Farooq, U., Khan, M. A. M. & Ahmad, T. Multifunctional E ffi cacy of Environmentally Benign Silver Nanospheres for Organic Transformation , Photocatalysis , and Water Remediation. (2020) doi:10.1021/acsomega.0c03584.
6) Chopra, R., Kaur, P. & Singh, K. Pyrene-based chemosensor detects picric acid upto attogram level through aggregation enhanced excimer emission. Anal. Chim. Acta 864, 55–63 (2015).
7) Kim, D. et al. A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid. 393–400 (2009) doi:10.1007/s00216-009-2819-4.
8) Valeur, B. Related Titles from WILEY-VCH Analytical Atomic Spectrometry with Flames and Plasmas Handbook of Analytical Techniques Single-Molecule Detection in Solution . Methods and Applications. vol. 8 (2001).
9) Piñero, P. Supporting Information Supporting Information. Aldenderfer, Mark S., Craig, Nathan M., Speak. Robert Jeff, Popelka-Filcoff, Rachel S. 2, 1–5 (1997).
10) Ali, F., Nayak, P. K., Periasamy, N. & Agarwal, N. Synthesis, photophysical, electrochemical and electroluminescence studies of red emitting phosphorescent Ir(III) heteroleptic complexes. J. Chem. Sci. 129, 1391–1398 (2017).
11) Nayak, P. K. et al. Blue and white light electroluminescence in a multilayer OLED using a new aluminium complex. J. Chem. Sci. 122, 847–855 (2010).
12) Banerjee, S., Ali, F., Nayak, P. K. & Agarwal, N. Synthesis , photophysical , electrochemical and thermal studies on carbazole-based acceptor molecules for heterojunction solar cell. Thin Solid Films 520, 2644–2650 (2012).
13) Ali, F., Sharma, A., Tiwari, J. P. & Chand, S. Extended interface layer concept for higher stability and improvement of life time in bulk heterojunction solar cells. 027108, 1–6 (2016).
14) Ali, F., Periasamy, N., Patankar, M. P. & Narasimhan, K. L. Integrated Organic Blue LED and Visible−Blind UV Photodetector. J. Phys. Chem. C 115, 2462–2469 (2011).
15) Ansari, M. O. & Mohammad, F. Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO 2) nanocomposites. Sensors Actuators, B Chem. 157, 122–129 (2011).
16) Ansari, S. A., Khan, M. M., Ansari, M. O. & Cho, M. H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 40, 3000–3009 (2016).
17) Nanocomposites, N., Ansari, M. O. & Mohammad, F. Thermal Stability of HCl-Doped-Polyaniline and TiO 2. (2011) doi:10.1002/app.
18) Ansari, S. P. & Mohammad, F. Electrical Conductivity Studies of Conducting Polymer Nanocomposites in Ambient Conditions. 24, 273–280 (2016).
19) Ansari, S. P. & Mohammad, F. Conducting nanocomposites of polyaniline / nylon 6 , 6 / zinc oxide nanoparticles.: preparation , characterization and electrical conductivity studies. Iran. Polym. J. 25, 363–371 (2016).
20) Ansari, S. P. & Mohammad, F. Conducting nanocomposites of polyaniline/nylon 6,6/zinc oxide nanoparticles: preparation, characterization and electrical conductivity studies. Iran. Polym. J. (English Ed. 25, 363–371 (2016).
21) Tanwar, A. S., Patidar, S., Ahirwar, S., Dehingia, S. & Iyer, P. K. Receptor free inner filter effect based universal sensors for nitroexplosive picric acid using two polyfluorene derivatives in the solution and solid states. Analyst 144, 669–676 (2019).
22) Maiti, K. et al. Simple Bisthiocarbonohydrazone as a Sensitive, Selective, Colorimetric, and Ratiometric Fluorescent Chemosensor for Picric Acids. (2017) doi:10.1021/acsomega.6b00288.
23) Yang, J. & Swager, T. M. Porous Shape Persistent Fluorescent Polymer Films.: An Approach to TNT Sensory Materials. 7863, 5321–5322 (1998).
24) Chatzandroulis, S., Tegou, E., Goustouridis, D., Polymenakos, S. & Tsoukalas, D. Capacitive-type chemical sensors using thin silicon / polymer bimorph membranes. 103, 392–396 (2004).
25) Phanachet, I., Whittle, T., Wanigaratne, K. & Murray, G. M. Functional Properties of Single Motor Units in Inferior Head of Human Lateral Pterygoid Muscle.: Task Relations and Thresholds. (2018).
26) Zhu, Z., Madigan, C. F., Swager, T. M. & Bulovic, V. Sensitivity gains in chemosensing by lasing action in organic polymers. 434, 1–4 (2005).
27) Jones, R. M. et al. Building highly sensitive dye assemblies for biosensing from molecular building blocks. 98, 14769–14772 (2001).
28) Manuscript, A. rsc.li/analyst. (2020) doi:10.1039/D0AN00732C.
29) Tanwar, A. S., Hussain, S., Malik, A. H., Afroz, M. A. & Iyer, P. K. Inner Filter Effect Based Selective Detection of Nitroexplosive-Picric Acid in Aqueous Solution and Solid Support Using Conjugated Polymer. ACS Sensors 1, 1070–1077 (2016).
30) Garcı, F. & Frick, B. Interpenetrated PNIPAM - Polythiophene Microgels for Nitro Aromatic Compound Detection. 25, 9579–9584 (2009).
31) Nagarkar, S. S., Desai, A. V., Samanta, P. & Ghosh, S. K. Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal-organic framework with a pendant recognition site. Dalt. Trans. 44, 15175–15180 (2015).
32) Ichikawa, T., Koizumi, H. & Kumagai, J. Envelope Modulation Analysis. 5647, 10698–10703 (1997).
33) Nagendran, S., Vishnoi, P. & Murugavel, R. Triphenylbenzene Sensor for Selective Detection of Picric Acid. J. Fluoresc. 27, 1299–1305 (2017).
34) Arora, H., Bhalla, V. & Kumar, M. Fluorescent aggregates of AIEE active triphenylene derivatives for the sensitive detection of picric acid. RSC Adv. 5, 32637–32642 (2015).
35) Dhiman, S., Singla, N. & Ahmad, M. Materials Advances. Mater. Adv. (2021) doi:10.1039/D1MA00478F.
36) Manuscript, A. www.rsc.org/njc. (2014) doi:10.1039/C4NJ01093K.
37) Online, V. A. & Kumar, M. RSC Advances. (2015) doi:10.1039/C5RA04337A.
38) Sarma, N. Sen & Gogoi, B. Curcumin-Cysteine and Curcumin-Tryptophan Conjugate as Fluorescence Turn On Sensors for Picric Acid in Aqueous Media Curcumin-Cysteine and Curcumin-Tryptophan Conjugate as Fluorescence Turn On Sensors for Picric Acid in Aqueous Media Bedanta Gogoi and Nee. (2015) doi:10.1021/acsami.5b01102.
39) Ponnuvel, K., Banuppriya, G. & Padmini, V. Sensors and Actuators B.: Chemical Highly efficient and selective detection of picric acid among other nitroaromatics by NIR fluorescent organic fluorophores. Sensors Actuators B. Chem. 234, 34–45 (2016).
40) Pramanik, S., Deol, H., Bhalla, V. & Kumar, M. AIEE Active Donor − Acceptor − Donor-Based Hexaphenylbenzene Probe for Recognition of Aliphatic and Aromatic Amines. doi:10.1021/acsami.7b09791.
41) Kaur, S., Gupta, A., Bhalla, V. & Kumar, M. Pentacenequinone derivatives: Aggregation-induced emission enhancement, mechanism and fluorescent aggregates for superamplified detection of nitroaromatic explosives. J. Mater. Chem. C 2, 7356–7363 (2014).
42) Paquin, F., Rivnay, J., Salleo, A., Stingelin, N. & Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015).
43) Sahoo, J., Waghmode, S. B., Subramanian, P. S. & Albrecht, M. Specific Detection of Picric Acid and Nitrite in Aqueous Medium Using Flexible Eu(III)-Based Luminescent Probe. ChemistrySelect 1, 1943–1948 (2016).
44) Lan, A. et al. A Luminescent Microporous Metal – Organic Framework for the Fast and Reversible Detection of High Explosives **. 4, 2334–2338 (2009).
45) Ju, P. et al. for highly selective and sensitive detection of picric. RSC Adv. 8, 21671–21678 (2018).
46) Jiang, B., Liu, W., Liu, S. & Liu, W. Dyes and Pigments Coumarin-encapsulated MOF luminescence sensor for detection of picric acid in water environment. Dye. Pigment. 184, 108794 (2021).
47) Ju, P. et al. Spectrochimica Acta Part A.: Molecular and Biomolecular Spectroscopy A novel high sensitive Cd-MOF fl uorescent probe for acetone vapor in air and picric acid in water.: Synthesis , structure and sensing properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 246, 118962 (2021).
48) Kasthuri, S., Gawas, P., Maji, S., Veeraiah, N. & Venkatramaiah, N. Selective Detection of Trinitrophenol by Amphiphilic Dimethylaminopyridine-Appended Zn(II)phthalocyanines at the Near-Infrared Region. ACS Omega 4, 6218–6228 (2019).
49) Ahmed, J. et al. Synthesis, characterization, and signi fi cant photochemical performances of delafossite AgFeO 2 nanoparticles. 493–503 (2020) doi:10.1007/s10971-020-05274-3.
50) Makkad, S. K. Amine decorated polystyrene nanobeads incorporating π-conjugated OPV chromophore for picric acid sensing in water. RSC Adv. 10, 6497–6502 (2020).
51) Makkad, S. K. & Sk, A. Surface Functionalized Fluorescent PS Nanobead Based Dual-Distinct Solid State Sensor for Detection of Volatile Organic Compounds. Anal. Chem. 90, 7434–7441 (2018).
52) Holá, K. et al. Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. ACS Nano 11, 12402–12410 (2017).
53) Li, M., Chen, T., Gooding, J. J. & Liu, J. Review of carbon and graphene quantum dots for sensing. ACS Sensors 4, 1732–1748 (2019).
54) Fan, Y. et al. A Schiff base-functionalized graphene quantum dot nanocomposite for preferable picric acid sensing. Dye. Pigment. 191, 109355 (2021).
55) Liao, Y. Z. et al. Oligotriphenylene Nanofiber Sensors for Detection of Nitro-Based Explosives. 726–735 (2012) doi:10.1002/adfm.201102013.
56) Wang, L. RSC Advances Star-shaped triazatruxene derivatives for rapid fl uorescence fi ber-optic detection of nitroaromatic explosive vapors †. RSC Adv. 6, 31915–31918 (2016).
57) Manuscript, A. rsc.li/njc. (2017) doi:10.1039/C7NJ03861E.
58) Kachwal, V. et al. induced enhanced emission ’ active pyrene derivativ.: a multifunctional and highly sensitive fluorescent sensor †. New J. Chem. 1, (2017).
59) Kathiravan, A. et al. Pyrene-Based Chemosensor for Picric Acid - Fundamentals to Smartphone Device Design. Anal. Chem. 91, 13244–13250 (2019).
60) Li, H., Jia, R. & Wang, Y. Spectrochimica Acta Part A.: Molecular and Biomolecular Spectroscopy p -Pyridine BODIPY-based fl uorescence probe for highly sensitive and selective detection of picric acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 117793 (2019) doi:10.1016/j.saa.2019.117793.
61) Ghosh, P. & Banerjee, P. AC SC. Anal. Chim. Acta (2017) doi:10.1016/j.aca.2017.02.008.
62) Camp, J. E. Biomolecular Chemistry. (2020) doi:10.1039/d0ob00350f.
63) Manuscript, A. Materials Chemistry B. (2016) doi:10.1039/C6TB01746K.
64) Manuscript, A. Nanoscale. (2017) doi:10.1039/C7NR02174G.
VOLUME 06 ISSUE 03 MARCH 2023
There is an Open Access article, distributed under the term of the Creative Commons Attribution – Non Commercial 4.0 International (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and building upon the work for non-commercial use, provided the original work is properly cited.
Our Services and Policies
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected.
The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.
International Journal of Multidisciplinary Research and Analysis will publish 12 monthly online issues per year,IJMRA publishes articles as soon as the final copy-edited version is approved. IJMRA publishes articles and review papers of all subjects area.
Open access is a mechanism by which research outputs are distributed online, Hybrid open access journals, contain a mixture of open access articles and closed access articles.
International Journal of Multidisciplinary Research and Analysis initiate a call for research paper for Volume 07 Issue 12 (December 2024).
PUBLICATION DATES:
1) Last Date of Submission : 26 December 2024 .
2) Article published within a week.
3) Submit Article : editor@ijmra.in or Online
Why with us
1 : IJMRA only accepts original and high quality research and technical papers.
2 : Paper will publish immediately in current issue after registration.
3 : Authors can download their full papers at any time with digital certificate.
The Editors reserve the right to reject papers without sending them out for review.
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected. The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.