1Amaravathi D, 2M.S.Reddy
1,2Centre for Apiculture Studies, Department of Zoology, Bangalore University, Jnana Bharathi, Bengaluru-560056, INDIA
DOI : https://doi.org/10.47191/ijmra/v5-i2-46Google Scholar Download Pdf
ABSTRACT:
Eco-immunological studies on feral organisms can throw insights into how host–pathogen dynamics fluctuate with selective pressure from human interventions and other natural infestations. Feral colonies are more susceptible to pathogen attack than the managed bees, in the absence of disease treatments. During the study tried to investigate the role of pathogen infections [Deformed wing virus (DWV) and Nosema ceranae] and gene expression of immune members (defensin-1, hymenoptaecin, pgrp-lc, pgrp-s2 and argonaute- 2) in the survival of feral bee colonies across seasons (winter and summer). We surveyed a total of 90 feral colonies over a 3-year period (2018–2021), measuring the pathogen levels and immune gene expression using quantitative polymerase chain reaction (qPCR). Our results confirmed of the positive upregulation of the immune gene members in winters where pathogen loads are found to be more. Higher pathogen levels seem to be associated with increased immune gene expression across all the species in the study. There was no significant effect seen among species, but significant effect was seen across the seasons (p < 0.05). Our results could help in suggesting the possible indicator genes to assess the overall health of honey bee colonies and provide evidence for the role of feralization in how they cope up with pathogen landscapes.
KEYWORDS:Apis cerana, feral colonies, Immune related genes, Real time PCR.
REFERENCES
1) Araki, H., Cooper, B., and Blouin, M. S. (2009). Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild., Biol. Lett. 5, 621–624. doi: 10.1098/rsbl.2009.0315
2) Bellard, C., Rysman, J. F., Leroy, B., Claud, C., and Mace, G. M. (2017). A global picture of biological invasion threat on islands., Nat. Ecol. Evol. 1, 1862–1869. doi: 10.1038/s41559-017-0365-6
3) Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T., and Deliberto, T. J. (2014). Consequences associated with the recent range expansion of non-native feral swine., Bioscience 64, 291–299. doi: 10.1093/biosci/biu015
4) Brutscher, L. M., Daughenbaugh, K. F., and Flenniken, M. L. (2015). Antiviral defence mechanisms in honey bees., Curr. Opin. Insect Sci. 10, 71–82. doi: 10.1016/j.cois.2015.04.016
5) Brutscher, L. M., Daughenbaugh, K. F., and Flenniken, M. L. (2015). Antiviral defence mechanisms in honey bees. Curr. Opin. Insect Sci. 10, 71–82. doi: 10.1016/j.cois.2015.04.016
6) Brutscher, L. M., Daughenbaugh, K. F., and Flenniken, M. L. (2017). Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defence. Sci. Rep. 7:6448. doi: 10.1038/s41598-017-06623-z
7) Brutscher, L. M., McMenamin, A. J., and Flenniken, M. L. (2016). The buzz about honey bee viruses. PLoS Pathog. 12:e1005757. doi: 10.1371/journal.ppat. 1005757
8) D’Alvise, P., Seeburger, V., Gihring, K., Kieboom, M., and Hasselmann, M. (2019). Seasonal dynamics and co-occurrence patterns of honey bee pathogens revealed by high-throughput RT-qPCR analysis. Ecol. Evol. 9, 10241–10252. doi: 10.1002/ece3.5544
9) Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J.-L., Jiang, H., et al. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15, 645–656. doi: 10.1111/j.1365-2583.2006.00682.
10) Galbraith, D. A., Yang, X., Niño, E. L., Yi, S., and Grozinger, C. (2015). Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLoS Pathog. 11:e1004713. doi: 10.1371/journal.ppat.1004713
11) Gammon, D., and Mello, C. (2015). RNA interference-mediated antiviral defence in insects. Curr. Opin. Insect Sci. 8, 111–120. doi: 10.1016/j.cois.2015.01.006.RNA
12) Gering, E., Incorvaia, D., Henriksen, R., Conner, J., Getty, T., and Wright, D. (2019). Getting back to nature: feralization in animals and plants. Trends Ecol. Evol. 34, 1137–1151. doi: 10.1016/j.tree.2019.07.018
13) Goblirsch, M. (2018). Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie 49, 131–150. doi: 10.1007/s13592-017-0535-1
14) Kuster, R. D., Boncristiani, H. F., and Rueppell, O. (2014). Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae., J. Exp. Biol. 217, 1710–1718. doi: 10.1242/jeb.097766
15) LeConte, Y., de Vaublanc, G., Crauser, D., Jeanne, F., Rousselle, J.-C., and Bécard, J.-M. (2007). Honey bee colonies that have survived Varroa destructor. Apidologie 38, 566–572. doi: 10.1051/apido:2007040
16) Locke, B. (2016). Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47, 467–482. doi: 10.1007/s13592-015-0412-8 17) Lourenço, A. P., Mackert, A., dos Santos Cristino, A., and Simões, Z. L. P. (2008). Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39, 372–385. doi: 10.1051/apido:2008015 18) Malla Sudhakar and B. Venkata Raman, 2020. Bactericidal and Anti-biofilm Activity of Tannin Fractions Derived from Azadirachta against Streptococcus mutans., Asian J. Appl. Sci. 13: 132-143. DOI: 10.3923/ajaps.2020.132.143
19) Martin, S. J., Highfield, A. C., Brettell, L., Villalobos, E. M., Budge, G. E., Powell, M., et al. (2012). Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. doi: 10.1126/science.1220941
20) Mcmahon, D. P., Paxton, R. J., Natsopoulou, M. E., Doublet, V., Fürst, M., Weging, S., et al. (2016). Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc. R. Soc. B Biol. Sci. 283:20160811. doi: 10.1098/rspb.2016. 0811
21) McMenamin, A. J., Daughenbaugh, K. F., Parekh, F., Pizzorno, M. C., and Flenniken, M. L. (2018). Honey bee and bumble bee antiviral defence. Viruses 10, 1–22. doi: 10.3390/v10080395
22) Meyer, R. S., and Purugganan, M. D. (2013). Evolution of crop species: genetics of domestication and diversification., Nat. Rev. Genet. 14, 840–852. doi: 10.1038/nrg3605
23) Möckel, N., Gisder, S., and Genersch, E. (2011). Horizontal transmission of deformed wing virus: pathological consequences in adult bees (Apis mellifera) depend on the transmission route., J. Gen. Virol. 92, 370–377. doi: 10.1099/vir.0. 025940-0
24) Moreira, X., Abdala-Roberts, L., Gols, R., and Francisco, M. (2018). Plant domestication decreases both constitutive and induced chemical defences by direct selection against defensive traits. Sci. Rep. 8:12678. doi: 10.1038/s41598- 018-31041-0
25) Ryabov, E. V., Wood, G. R., Fannon, J. M., Moore, J. D., Bull, J. C., Chandler, D., et al. (2014). A virulent strain of deformed wing virus (DWV) of honey bees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 10:e1004230. doi: 10.1371/journal.ppat. 1004230
26) Ryabov, E. V., Wood, G. R., Fannon, J. M., Moore, J. D., Bull, J. C., Chandler, D., et al. (2014). A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 10:e1004230. doi: 10.1371/journal.ppat. 1004230
27) Simone-Finstrom, M. (2017). Social immunity and the superorganism: behavioural defences protecting honey bee colonies from pathogens and parasites. Bee World 94, 21–29. doi: 10.1080/0005772x.2017.1307800
28) Taric, E., Glavinic, U., Vejnovic, B., Stanojkovic, A., Aleksic, N., Dimitrijevic, V., et al. (2020). Oxidative stress, endoparasite prevalence and social immunity in bee colonies kept traditionally vs. those kept for commercial purposes. Insects 11:266. doi: 10.3390/insects11050266
29) Taylor, R. B., Hellgren, E. C., Gabor, T. M., and Ilse, L. M. (1998). Reproduction of feral pigs in southern Texas., J. Mammal. 79, 1325–1331. doi: 10.2307/1383024
30) Van Engelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., et al. (2009). Colony collapse disorder: a descriptive study. PLoS One 4:e6481. doi: 10.1371/journal.pone.0006481
31) Yi, H.-Y., Chowdhury, M., Huang, Y.-D., and Yu, X.-Q. (2014). Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807–5822. doi: 10.1007/s00253-014-5792-6
32) Youngsteadt, E., Appler, R. H., López-Uribe, M. M., Tarpy, D. R., and Frank, S. D. (2015). Urbanization increases pathogen pressure on feral and managed honey bees. PLoS One 10:e0142031. doi: 10.1371/journal.pone.0142031
Volume 05 Issue 02 February 2022
Our Services and Policies
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected.
The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.
International Journal of Multidisciplinary Research and Analysis will publish 12 monthly online issues per year,IJMRA publishes articles as soon as the final copy-edited version is approved. IJMRA publishes articles and review papers of all subjects area.
Open access is a mechanism by which research outputs are distributed online, Hybrid open access journals, contain a mixture of open access articles and closed access articles.
International Journal of Multidisciplinary Research and Analysis initiate a call for research paper for Volume 07 Issue 12 (December 2024).
PUBLICATION DATES:
1) Last Date of Submission : 26 December 2024 .
2) Article published within a week.
3) Submit Article : editor@ijmra.in or Online
Why with us
1 : IJMRA only accepts original and high quality research and technical papers.
2 : Paper will publish immediately in current issue after registration.
3 : Authors can download their full papers at any time with digital certificate.
The Editors reserve the right to reject papers without sending them out for review.
Authors should prepare their manuscripts according to the instructions given in the authors' guidelines. Manuscripts which do not conform to the format and style of the Journal may be returned to the authors for revision or rejected. The Journal reserves the right to make any further formal changes and language corrections necessary in a manuscript accepted for publication so that it conforms to the formatting requirements of the Journal.