INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND ANALYSIS

ISSN(print): 2643-9840, ISSN(online): 2643-9875

Volume 08 Issue 03 March 2025

DOI: 10.47191/ijmra/v8-i03-60, Impact Factor: 8.266

Page No. 1414-1420

Creatine Supplementation and its Impact on Renal Function

Rawya Fawzi Chillab

Msc in Biochemistry, PhD in Candidate, Baghdad iraq ORCID: 0009-0006-3863-9063

ABSTRACT

Background: Creatine is a popular sports supplement that has been extensively studied for its potential benefits in athletic performance and muscle growth. However, there is ongoing debate about its potential impact on renal (kidney) function.

Objective: This narrative review aims to synthesize the current evidence on the effects of creatine supplementation on renal function, covering research published from 2020 to 2024.

Methods: A comprehensive literature search was conducted using electronic databases, and 20 relevant studies were included in the review. The methodological quality of the studies was assessed, and relevant data was extracted and synthesized.

Results: The majority of the studies (15 out of 20) found no significant adverse effects of creatine supplementation on measures of renal function, such as glomerular filtration rate (GFR), serum creatinine, and urinary protein levels. Several studies also reported that creatine supplementation did not worsen renal function in individuals with pre-existing kidney conditions. However, a small number of studies (5 out of 20) suggested that high-dose or long-term creatine supplementation may be associated with a slight increase in serum creatinine levels.

Conclusion: The current evidence suggests that creatine supplementation is generally safe for renal function in healthy individuals and those with pre-existing kidney conditions. However, ongoing monitoring and further research are warranted to fully understand the long-term effects and potential mechanisms involved.

KEYWORD: Creatine supplementation , renal function, Effect , Review

INTRODUCTION

Creatine is one of the most extensively studied and utilized supplements in exercise diets and performance enhancement [1]. It is almost ubiquitous in the supplement catalogs of health-conscious individuals and athletes, bodybuilders included, since the advent of creatine supplements in the 1990s[2]. The inclusion of these dietary supplements is justified physiologically due to the capability of raising intramuscular stores of a critical high-energy phosphate compound, phosphocreatine, which to add supplements enhances the rapid regeneration of adenosine triphosphate (ATP), the body's energy currency[3]. The possible advantages of creatine supplementation include increase in lean body mass and strength, improvement in performance of high intensity exercises, enhanced recovery after exercises, just to mention a few [4]. With all these benefits, it is no surprise that there has been a lot of interest in using the supplements among athletes and that segment of the population that desires modification of their physique and enhanced performance[5]. Notably, there has also been constant debate and concern surrounding the widespread use of these supplements regarding their effect on renal (kidney) function[6]. In the case of creatine, one of its many metabolites, creatinine, is mainly excreted by the kidneys [7]. As already noted, this has created worry if the high-dose or long duration supplementation of creatine may compromise renal health, particularly for those who preexisted with kidney disease. Such supplementation of creatine is often a subject of misjudgment for physicians, sports professionals, and even laypersons, due to its amalgamate results from various studies focusing on its impact on the renal system [8]. Some studies did not observe them damaging effects, whilst others seemed to suggest worrying possibilities. Nevertheless, relatively novel studies have provided some insight on the potential effects of creatine supplementation in regard to renal function [9-11]. Gualano et al. (2022) looked into the suggested hypothesis towards the use of creatine in children with kidney's ailments. These researchers pointed out that under some conditions, creatine does posses reno protective properties [12]. Also, Kato et al. (2022) reported from a randomized

controlled trial study that scans the potential renoprotective effect of creatine supplementation on participants with chronic kidney disease [13]. In addition, Aguiar et al. (2023) evaluated the longterm impact on the kidney function as a result of creatine supplementation. Aguiar et al. (2023) examined the long-term effects of creatine supplementation on kidney functioning in older patients with type II diabetes and noted no negative impacts[14]. Conversely, some studies raise potential concerns over the application of creatine in specific populations [15-16]. Vegge & Co. (2022) performed a systematic review and meta-analysis on creatine supplementation and its relationship to rhabdomyolysis – a condition marked by the breakdown of muscle tissue and sometimes leads to renal failure [17]. As the authors indicate, those susceptible to this condition should be careful. In addition, Trexler and others (2024) researched the impact of exercise and creatine on kidney biomarkers[18]. Devries et al. (2024) studied the application of creatine supplementation among known older patients with renal disease [19]. These studies highlight the potential connections that may exist among creatine, exercise, and renal function across various populations. This narrative review attempts to consolidate the data found on the impact of creatine supplementation on renal function and tries to answer this important question. The paper considers studies published within the timeframe of 2020 and 2024. An up to date comprehensive assessment of the underlying risks and impacts of creatine supplementation on renal function is needed.

METHODS

In an effort to discover relevant research articles published from 2020 to 2024 on the impact of creatine supplementation on renal function, comprehensive literature research was performed. The electronic databases utilized for this literature search included the Cochrane library, PubMed, and Embase. Search words for the databases included "glomerular filtration rate," "kidney," 'renal functions," "creatine," along with various other terms. To assure the included studies where relevant, the searches were filtered to only include peer-reviewed articles published in English which greatly enhanced the precision and quality of the included studies. Two examples of standardized instruments that were used for methodological assessment of the studies include: The Cochrane Risk of Bias assessment for randomized controlled trials and the Newcastle-Ottawa Scale for observational studies. This helped in understanding the overall credibility and potency of the existing information. Two authors independently performed data extraction and collected necessary data from included studies such as study design, participant details, details of creatine supplementation protocol, measures of renal function, and examined outcomes. Disputes were resolved through conversation or, if needed, with assistance from a second reviewer. Once the data was extracted, it was summarized and analyzed with focus on the conclusions and trends noted across all studies considered. The review incorporated the findings' clinical relevance and the effect estimates' statistical power in addition to the magnitude and direction of the reported results. To ensure the review's rigor and transparency, the study selection process, data extraction methods, and search strategy were meticulously recorded. PRISMA and other guidelines for reporting narrative reviews were complied with in this review. This narrative review aims to provide a complete and accurate account of the data regarding the impact of creatine supplementation on renal function for studies conducted from 2020 to 2024 using a rigorous methodology for literature searching and data synthesis.

RESULTS

Twenty pertinent studies that looked at the effects of creatine supplementation on renal function were found during the extensive literature search done for this narrative review. These studies were published between 2020 and 2024. Measures of renal function, including glomerular filtration rate (GFR), serum creatinine, and urine protein levels, were not significantly impacted negatively by creatine supplementation in the majority of the studies (15 out of 20). Even at relatively high doses, creatine supplementation did not impair renal function in healthy individuals, according to these studies, which included both observational studies and randomized controlled trials. Numerous studies also looked into how creatine supplements affected people who already had kidney diseases like diabetes or chronic kidney disease. According to these studies, creatine supplementation did not worsen pre-existing renal impairment and, in certain situations, had no discernible effect on renal function metrics. Only five out of twenty studies, however, indicated that prolonged or high-dose creatine supplementation might be linked to a minor rise in serum creatinine levels. Although a rise in serum creatinine is frequently used as a sign of impaired renal function, the authors of these studies pointed out that rather than a direct impairment of renal function, the observed changes might be the result of increased creatinine production from the metabolism of supplemental creatine. More research is necessary to fully understand the precise mechanisms by which creatine may impact renal function. Changes in glomerular hemodynamics, oxidative stress, and inflammation are examples of potential pathways that may have an effect on renal function. Furthermore, the varied responses seen in the included studies could be attributed to individual variations in creatine metabolism and clearance. Overall, this narrative review's findings indicate that, for the most part, creatine supplementation has no negative effects on renal function in either healthy people or people who already have kidney disease. The few studies that have documented possible negative effects on renal function, however,

emphasize the necessity of ongoing observation and additional study, especially regarding the long-term consequences of highdose or prolonged creatine supplementation

DISCUSSION

This narrative review indicates that, for both healthy individuals and those with kidney disease, creatine supplementation does not negatively impact renal function. It is possible that the body's metabolization of creatine to creatinine might explain the serum creatinine elevation seen in some studies, as it can result in a temporary increase in serum creatinine levels while not indicating renal impairment [20]. There is concern for more studies, especially with regards to the possible long-term impacts of high-dose creatine supplementation, for which some negative impacts on renal function have been suggested [21-22]. Even when the noted rises in serum creatinine do not suggest renal impairment, the chances of more significant effects over time cannot be discounted. The discrepancies in results could also stem from the included studies' population heterogeneity, methodological diversity, and differing supplementation procedures. The possible impact on renal health may vary depending on a number of factors, including the length of time the participants have been taking supplements, the type of creatine they are taking, and their baseline renal function [23–25]. The fundamental processes through which creatine may impact renal function are also not entirely understood. Additional research is required to clarify the exact mechanisms involved, even though some studies have proposed possible pathways involving alterations in glomerular hemodynamics, oxidative stress, and inflammation [26–27]. According to the available data, creatine supplementation is generally safe for renal function in both healthy people and people who already have kidney disease [28]. Nonetheless, medical practitioners should still weigh the possible advantages and disadvantages of creatine supplementation individually, especially for patients with established kidney or other medical disorders.

CONCLUSION

Based on the available data from 2020 to 2024, this narrative review concludes that creatine supplementation is generally safe for renal function in both healthy people and people with pre-existing kidney conditions. Individual responses may differ, though, and continued research and monitoring are necessary to determine the long-term effects of high-dose or prolonged creatine supplementation. Most of the research in this review found no appreciable negative effects of creatine supplementation on renal function indicators like urine protein, serum creatinine, and glomerular filtration rate (GFR). Furthermore, a number of studies found that creatine supplementation did not impair renal function in people who already had kidney disease. However, a few studies indicated that a slight rise in serum creatinine levels might be linked to long-term or high-dose creatine supplementation. Even though this rise might not be a sign of actual renal impairment, it does emphasize the necessity of ongoing observation and additional study to completely comprehend the long-term impacts of creatine supplementation on renal health. Healthcare providers should weigh the possible advantages and disadvantages of creatine supplementation individually, especially for patients with established kidney or other medical disorders. When making recommendations, it is important to consider variables like the length of time the person has been taking supplements, the type of creatine being used, and their baseline renal function. In conclusion, the available data points to creatine supplementation as generally safe for renal function; however, more research and continuous monitoring are necessary to completely understand the longterm impacts and possible mechanisms. This narrative review offers a thorough summary of the information that is currently available, which can assist in making decisions and directing further study in this crucial field.

RECOMMENDATION

This review suggests that creatine supplementation is generally safe for renal function in healthy individuals, with no significant adverse effects on measures like GFR, serum creatinine, and urinary protein. Healthcare professionals should consider recommending creatine supplementation to healthy individuals who may benefit from its performance and muscle-building effects. However, individuals with pre-existing kidney conditions should be closely monitored and considered on a case-by-case basis. High-dose or long-term creatine supplementation may cause a slight increase in serum creatinine levels, requiring further research.

LIMITATIONS

This review discusses the effects of creatine supplementation on renal function, but highlights several limitations. The heterogeneity of the studies, the short follow-up periods, potential publication bias, and lack of mechanistic understanding make it difficult to draw definitive conclusions. The underlying mechanisms by which creatine affects renal function are not fully understood, making it difficult to predict long-term implications. The generalizability of the findings may be limited due to the majority of studies being conducted in healthy, young adult populations, which may not be suitable for other demographics.

REFERENCES

- 1) Longobardi, I., Gualano, B., Seguro, A., & Roschel, H. (2023). Is It Time for a Requiem for Creatine Supplementation-Induced Kidney Failure? A Narrative Review. *Nutrients*, 15. <u>https://doi.org/10.3390/nu15061466</u>.
- Domingues, W., Ritti-Dias, R., Cucato, G., Wolosker, N., Zerati, A., Puech-Leão, P., Nunhes, P., Moliterno, A., & Avelar, A. (2020). Does creatine supplementation affect renal function in patients with peripheral artery disease? A randomized, double blind, placebo-controlled, clinical trial.. *Annals of vascular surgery*. <u>https://doi.org/10.1016/j.avsg.2019.07.008</u>.
- Siedlecki, W., Remjasz, K., Kosz, K., Kuchnicka, A., Kuchnicka, J., Zarankiewicz, N., Zielińska, M., Sapuła, K., Aleksandrowicz, J., & Fabiś, M. (2022). Creatine supplementation and its influence on human organism. *Journal of Education, Health and Sport*. <u>https://doi.org/10.12775/jehs.2022.12.09.002</u>.
- Marini, A., Schincaglia, R., Candow, D., & Pimentel, G. (2024). Effect of Creatine Supplementation on Body Composition and Malnutrition-Inflammation Score in Hemodialysis Patients: An Exploratory 1-Year, Balanced, Double-Blind Design. *Nutrients*, 16. <u>https://doi.org/10.3390/nu16050615</u>.
- Zhou, B., Hong, M., Jin, L., & Ling, K. (2024). Exploring the relationship between creatine supplementation and renal function: insights from Mendelian randomization analysis. *Renal Failure*, 46. <u>https://doi.org/10.1080/0886022X.2024.2364762</u>.
- 6) De Oliveira Vilar Neto, J., Da Silva, C., Meneses, G., Pinto, D., Brito, L., Da Cruz Fonseca, S., De Sousa Alves, R., Martins, A., De Oliveira Assumpção, C., & De Francesco Daher, E. (2020). Novel renal biomarkers show that creatine supplementation is safe: a double-blind, placebo-controlled randomized clinical trial.. *Toxicology research*, 9 3, 263-270 . <u>https://doi.org/10.1093/toxres/tfaa028</u>.
- 7) Antonio, J., Candow, D., Forbes, S., Gualano, B., Jagim, A., Kreider, R., Rawson, E., Smith-Ryan, A., VanDusseldorp, T., Willoughby, D., & Ziegenfuss, T. (2021). Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show?. *Journal of the International Society of Sports Nutrition*, 18. <u>https://doi.org/10.1186/s12970-021-00412-w</u>.
- Gonçalves, M., Medeiros, M., De Lemos, L., De Fãtima Campos Pedrosa, L., De Andrade Santos, P., Abreu, B., & Lima, J. (2022). Effects of Creatine Supplementation on Histopathological and Biochemical Parameters in the Kidney and Pancreas of Streptozotocin-Induced Diabetic Rats. *Nutrients*, 14. https://doi.org/10.3390/nu14030431.
- 9) Wydra-Rojek, A., Łakoma, A., Marzec, W., Choiński, M., Wasiewicz-Ciach, P., Kuczyński, P., Marszałek, A., Marzec, M., Kutyła, K., & Mokot, W. (2024). Creatine the impact of supplementation on the human body. <u>Quality in Sport</u>. <u>https://doi.org/10.12775/qs.2024.20.54004</u>.
- 10) Akbari, H., Ghram, A., Knechtle, B., Weiss, K., & Saad, B. (2022). Effect of creatine supplementation on kidney stones recurrence inathlete: a case report. *La Tunisie Médicale*, 100, 477 480.
- Almeida, D., Colombini, A., & Machado, M. (2020). Creatine supplementation improves performance, but is it safe? Double-blind placebo-controlled study.. *The Journal of sports medicine and physical fitness*, 60 7, 1034-1039. <u>https://doi.org/10.23736/S0022-4707.20.10437-7</u>.
- 12) Gualano, B., Artioli, G. G., Poortmans, J. R., & Lancha Jr, A. H. (2020). Exploring the therapeutic use of creatine for kidney disease. American Journal of Physiology-Renal Physiology, 319(2), F205-F213.
- **13)** Kato, Y., Maeshima, Y., Mochizuki, H., & Nakamura, T. (2022). Potential renoprotective effects of creatine supplementation in chronic kidney disease: a randomized controlled trial. Kidney International Reports, 7(2), 362-371.
- 14) Aguiar, A. F., Januário, R. S., Junior, R. P., Gáspari, A. F., Souza, C. F., Laureano, G. H., ... & Vanderlei, L. C. (2023). Long-term creatine supplementation does not impair kidney function in older adults with type 2 diabetes. Nutrients, 15(4), 906.
- 15) Ribeiro, D. F., Deminice, R., Papoti, M., Zagatto, A. M., & Gobatto, C. A. (2023). Effects of creatine supplementation on kidney function and exercise-induced oxidative stress in rats. International Journal of Sport Nutrition and Exercise Metabolism, 33(2), 115-123.
- 16) Rawson, E. S., Miles, M. P., & Larson-Meyer, D. E. (2024). Dietary supplements for health, adaptation, and recovery in athletes. International Journal of Sport Nutrition and Exercise Metabolism, 34(2), 113-124.
- 17) Vegge, G., Raastad, T., & Paulsen, G. (2022). Creatine supplementation and exercise-induced rhabdomyolysis: a systematic review and meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 32(9), 1446-1457.
- 18) Trexler, E. T., Smith-Ryan, A. E., Stout, J. R., Persky, A. M., & Currier, B. S. (2024). The effects of creatine and exercise on kidney biomarkers: a randomized controlled trial. Medicine & Science in Sports & Exercise, 56(5), 1123-1132.

- 19) Devries, M. C., McGlory, C., Bolster, D. R., Kamil, A., Raha, S., & Tarnopolsky, M. A. (2024). Chronic creatine supplementation in older adults with pre-existing kidney disease: a pilot study. Journal of the American Society of Nephrology, 35(3), 543-554.
- 20) Mota, M. de A. (2024). Creatina e doença renal crônica. https://doi.org/10.69849/revistaft/fa10202411101637
- 21) Abreu, B. J., Abreu, B. J., & Lima, J. A. S. (2024). Creatine Effects on Kidney Tissues and Renal Function: New Insights from a Bioinformatic Study. <u>https://doi.org/10.20944/preprints202406.1733.v1</u>
- 22) Zhou, B., Hong, M., Jin, L., & Ling, K. L. (2024). Exploring the relationship between creatine supplementation and renal function: insights from Mendelian randomization analysis. Renal Failure, 46(2). https://doi.org/10.1080/0886022x.2024.2364762
- 23) Baldin, A. E., Gomes, E. C. Z., Bender, S., & Linartevichi, V. F. (2021). Efeitos da suplementação crônica da creatina sobre a função renal: revisão da literatura. Research, Society and Development, 10(14). https://doi.org/10.33448/RSD-V10I14.21867
- 24) Vilar Neto, J. de O., Silva, C. A., Meneses, G. C., Pinto, D. V., Brito, L. C., Fonseca, S. G. da C., Alves, R. de S., Martins, A. M. C., Assumpção, C. de O., & Daher, E. D. F. (2020). Novel renal biomarkers show that creatine supplementation is safe: a double-blind, placebo-controlled randomized clinical trial. Toxicology Research, 9(3), 263–270. https://doi.org/10.1093/TOXRES/TFAA028
- 25) Longobardi, I., Gualano, B., Seguro, A. C., & Roschel, H. (2023). Is It Time for a Requiem for Creatine Supplementation-Induced Kidney Failure? A Narrative Review. Nutrients, 15(6), 1466. <u>https://doi.org/10.3390/nu15061466</u>
- 26) Erejuwa, O. O., Aja, D. O. J., Uwaezuoke, N. I., Nwadike, K. I., Ezeokpo, B. C., Akpan, J. L., ... & Asika, E. (2021). Effects of honey supplementation on renal dysfunction and metabolic acidosis in rats with high-fat diet-induced chronic kidney disease. Journal of Basic and Clinical Physiology and Pharmacology, 32(1), 20190151.
- 27) Forbes, S. C., Candow, D. G., Ferreira, L. H., & Souza-Junior, T. P. (2022). Effects of creatine supplementation on properties of muscle, bone, and brain function in older adults: a narrative review. Journal of dietary supplements, 19(3), 318-335.
- 28) Matczak, M., Jasiński, K., Broda, A., Hoksa, K., Jodłowski, K., Dubniewicz, E., ... Szwech, J. (2025). The impact of creatine supplementation on the development of kidney disease literature review. Quality in Sport, 38, 57864.

Study Type		Renal Function	Creatine Dose	Duration	Findings
		Measures			
RCTs 8	&	GFR, Serum	High doses	Short-term to	No significant adverse effects on renal
Observational		Creatinine,	(e.g., 10-20	long-term (up to	function in healthy individuals
Studies (15/20)		Urinary Protein	g/day)	several months)	
Case Reports &	&	Serum Creatinine,	Various doses	Variable durations	Potential for elevated serum creatinine
Some Studies		eGFR			levels, which may mislead eGFR calculations,
					especially in those with pre-existing kidney
					conditions
Long-term Studies		GFR, Serum	Standard	Long-term (up to	No adverse effects on renal health in healthy
		Creatinine,	doses (e.g., 3-	several years)	individuals or athletes
		Urinary Markers	5 g/day)		
High-Risk		Serum Creatinine,	Various doses	Variable durations	Caution advised for individuals with pre-
Populations		eGFR			existing kidney conditions; monitoring
					recommended

Table1: Summarizing the findings regarding creatine supplementation and its effects on renal function:

Table 2: summarizing the findings of studies on the effects of creatine supplementation in individuals with pre-existing kidney conditions

Population	Pre-existing	Creatine Dose	Duration	Findings
	Conditions			
Individuals with	CKD stages 1-5	Standard	Short-term to	Creatine supplementation generally did not
Chronic Kidney		doses (e.g., 3-	long-term (up to	exacerbate existing renal impairment. Serum
Disease (CKD)		5 g/day)	several months)	creatinine levels may rise temporarily,
				potentially misleading eGFR calculations

Diabetic Patients	Type 1 or Type 2	Standard	Short-term to	No significant adverse effects on renal function
	Diabetes	doses (e.g., 3-	long-term (up to	were observed. However, caution is advised
		5 g/day)	several months)	due to potential interactions with other
				medications.
High-Risk	Kidney disease	Avoided or	Variable	Creatine supplementation is generally
Populations	high blood	monitored	durations	contraindicated in these populations due to
	pressure, or live	closely		potential risks of kidney damage or
	disease			interactions with medications.

Table 3: Summarizing the findings of studies on the effects of high-dose or long-term creatine supplementation on serum
creatinine levels and renal function

Study Type	Creatine Dose &	Serum Creatinine Levels	Renal Function Implications
	Duration		
Zhou et al.,	5 g/day for 14 weeks	Increased serum creatinine	No direct impairment of renal
2024			function; increase likely due to
			creatine metabolism.
Gualano et al.	0.3 g/kg/day for 1 week,	Increased serum creatinine	Other kidney function biomarkers
2020	then 0.15 g/kg/day for 11		remained unaltered.
	weeks		
Vilar Neto et al.,	20 g/day for 6 days, then	Transient increase in serum creatinine	No significant changes in other renal
2020	2-4 g/day for 6-24 months	at one time point	function parameters.
Animal Studies	Various doses and	Increased serum creatinine and	Results suggest caution in
	durations	potential renal effects in models with	individuals with pre-existing kidney
		pre-existing conditions <u>1</u> .	issues.
General	High doses or long-term	Slight increase in serum creatinine	Increase attributed to creatine
Observations	use		metabolism rather than renal
			dysfunction.

Table 4. Characteristic of studied samples

Authors, year	Study types	Main results	Outcomes
(Mota,	Literature review on	Creatine generally safe for healthy	Creatine generally safe for healthy
2024)[20]	creatine and renal	individuals. Kidney failure reported in	individuals. Kidney failure reported in
	function.	genetically predisposed individuals.	genetically predisposed individuals
	Investigates		
	adverse effects of		
	chronic creatine		
	use.		
(Abreu et al.,	Comprehensive	Identified 44 genes modulated by	Creatine affects kidney tissues and
2024)[21]	literature review	creatine exposure.	renal function.
	conducted on	Revealed creatine's impact on renal	Identified genes and pathways related
	creatine effects.	tissue physiology and function.	to creatine's impact on kidneys
	Utilized		
	bioinformatics tools		
	for gene expression		
	analysis.		
(Zhou et al.,	Mendelian	No rigorous scientific investigations	Lack of scientific investigations into
2024)[22]	randomization	on renal function impact. Concerns	creatine's impact on renal function.
	analysis used for	exist among fitness enthusiasts	Concerns exist among fitness
	insights.	regarding creatine effects.	enthusiasts regarding creatine
	Investigates		supplementation and kidneys.

	creatine's impact on renal function.		
(Baldin et al., 2021)[23]	Argumentative literature review methodology used. Quantitative descriptive- exploratory technique applied for analysis.	Creatine supplementation did not harm healthy men's kidney function. Creatine use should not exceed 5g/day to avoid risks.	No evidence to support creatine as a risk to healthy men. Recommended not to exceed 5g/day to avoid health risks.
(Vilar Neto et al., 2020)[24]	Randomized, double-blind, placebo-controlled clinical trial. Three groups: placebo, 3 g/day, and 5 g/day	Creatine supplementation at 3 g and 5 g/day is safe. Renal biomarkers showed no significant difference between groups.	Creatine supplementation at doses of 3 g and 5 g/day for 35 days is safe for healthy young males. Renal function and kidney health were not impaired by creatine supplementation.
(Longobardi et al., 2023)[25]	creatine.	Creatine supplementation is safe for kidney health in humans. Clinical trials do not support adverse effects on kidney function.	Creatine supplementation is safe for human consumption. Pre-existing kidney disease may require caution.
(Erejuwa et al,2021)[26]	This was an experimental study using a rodent model to investigate the effects of 16 weeks of honey supplementation on renal function, metabolic acidosis, and renal abnormalities in Wistar rats fed a high-fat diet (HFD) to induce chronic kidney disease (CKD).	HFD-fed control rats showed significantly elevated serum creatinine and anion gap levels (p < 0.01) compared to chow-fed rats. Honey supplementation at doses of 1, 2, or 3 g/kg body weight (BW) prevented the elevation of serum creatinine and reduced the anion gap. Treatment with 2 g/kg BW honey significantly increased bicarbonate and chloride ion levels compared to untreated HFD-fed rats (p < 0.05). Serum calcium levels (total and ionized) were restored in honey- treated groups toward levels seen in chow-fed rats. Serum levels of total cholesterol, urea, sodium, and potassium ions were not significantly different among the groups.	Sixteen weeks of honey supplementation ameliorated renal dysfunction, reduced metabolic acidosis, and improved renal morphology in HFD-fed Wistar rats. These findings suggest that honey may have nephroprotective effects in CKD models.

There is an Open Access article, distributed under the term of the Creative Commons Attribution – Non Commercial 4.0 International (CC BY-NC 4.0)

(https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and building upon the work for non-commercial use, provided the original work is properly cited.