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ABSTRACT: This article elucidates the method and implementation of finite differences, aiming to enhance clarity for students 

and provide detailed insights into its application, as many authors assume a pre-existing understanding of numerical analysis. It 

includes two case studies employing Dirichlet and Cauchy boundary conditions, demonstrating the precision and effectiveness of 

this numerical tool in obtaining results. 
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I. INTRODUCTION  

Numerical analysis, pivotal in mathematics and science, traces its origins to ancient times, gaining prominence with 

Neptune's discovery in 1846 [1], affirming Newton's law of gravitation. Originating with the Babylonians and evolving, it saw 

significant advancements with the 16th-century advent of algebra and logarithm tables. The 18th century saw Stirling and Taylor 

laying finite difference calculus foundations, a key aspect of modern numerical analysis. The 19th century marked a leap in 

numerical analysis with automatic calculators [2], further accelerated post-World War II by high-speed electronic computers, 

enabling scientific breakthroughs and emphasizing precision in numerical calculations. 

Modern numerical analysis, initiated by John von Neumann and Herman Goldstine in 1947 [3], addressed rounding 

errors and introduced scientific computing fundamentals. It is now defined by the synergy of programmable computers, 

mathematical analysis, and complex problem-solving. Numerical methods, essential in engineering for solving nonlinear 

algebraic equations and differential equations, rely on basic arithmetic operations [4-9]. 

In science and technology, mathematical models describe real phenomena, with applied mathematics seeking 

appropriate tools for problem-solving. Unfortunately, classical analytical methods are not always applicable due to various 

limitations, leading to the advancement of numerical methods, significantly influenced by computing advancements. Numerical 

analysis consists of iterative algorithms providing solutions based on stopping criteria and error estimates. These algorithms 

serve multiple purposes, including calculating numerical derivatives, integrals, differential equations, linear algebra, 

interpolations, curve fitting, and polynomials [4-9]. Numerical methods enable understanding and applying numerical schemes 

for solving mathematical, engineering, and scientific problems on computers. They involve simplifying basic numerical schemes, 

programming, and solving problems on computers. 

Numerical analysis aims to design methods for efficiently approximating mathematical problem solutions. Its primary 

goal is to find approximate solutions to complex problems using simple arithmetic operations, involving a sequence of algebraic 

and logical operations. Numerical analysis has become crucial in engineering process simulator software development. For 
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instance, Pipe Flow, a piping system design and modeling software, calculates fluid flow in various network configurations. Pipe 

Flow Expert determines flow rates and pressure drops [10-12]. Matlab, including SIMULINK, models, simulates, and analyzes 

dynamic systems, widely used in signal processing and control engineering [13-16]. COMSOL Multiphysics® models physical 

phenomena, virtually any phenomenon describable by PDEs, including heat transfer, fluids, electromagnetism, and structural 

mechanics [17-19]. It offers multiphysics capabilities for modeling combinations of phenomena based on PDEs. COMSOL 

simplifies application development with its Model Library, making it accessible for users without extensive mathematical or 

numerical analysis knowledge. Its features make it applicable in various fields, including acoustics, electromagnetism, MEMS, 

microwave engineering, chemistry, fluid dynamics, structural mechanics, physics, geophysics, optics, photonics, quantum 

mechanics, control systems, and applied mathematics. 

Cadence PSpice, a Spice-based simulator, specializes in simulating designs with analog and digital components. It offers 

a range of simulation models and integrates with Allegro® Design Entry HDL and OrCAD® Capture for schematic capturing [20, 

21]. Opera Simulation Software, a comprehensive CAE toolset for electromagnetic system design, analysis, simulation, and 

optimization, includes multiphysics effects [22, 23]. Created in 1984, Opera facilitates the design and optimization of 2D and 3D 

electromechanical devices, solving various electromagnetic problems. 

This article aims to guide students in solving ordinary differential equations using finite difference numerical solutions, 

considering Maple 17's exact numerical solution. It presents four case studies applying the methodology under different 

boundary conditions. 

This paper is organized as follows: Section II introduces the finite difference method in the context of ordinary 

differential equations. Section III presents two case studies for analysis. Section IV is dedicated to the discussion of the findings, 

and Section V concludes the paper. 

 

II. SOME BASICS OF FINITE DIFFERENCES METHOD 

The finite difference method (FDM) is applied to find the solution of ordinary differential equations (ODEs) with 

boundary conditions, that is, when the values of the function at the ends of the interval [a, b] are known. This method involves 

replacing the numerical derivation formulas derived from the Newton-Gregory interpolating polynomial in the differential 

equation. Like the interpolating polynomial, the finite difference method adheres to specific rules, including constant spacing 

and pivoting. It consists of substituting the numerical derivation equations into the differential equation and then constructing a 

recurrence equation. This pivoting process, applied at n equidistant points within the interval [a, b], results in a set of equations 

that will be solved by a specific numerical method. The application of this method allows for effectively addressing and solving 

ODEs with defined boundary conditions. 

The FDM is a numerical approach to solving differential equations, providing numerical rather than symbolic solutions. 

In this method, functions are represented as arrays of discrete points, with the accuracy of the solution improving as more 

points are used, albeit at the cost of increased computational intensity. This represents a fundamental trade-off in the method. 

The procedure for FDM is as follows: 

1 Identify the governing equation and boundary values.  

For example, let the differential equation 

𝑑2𝑦(𝑥)

𝑑𝑥2
− 2

𝑑𝑦(𝑥)

𝑑𝑥
+ 1 = 0, 

(1) 
with boundary values given by 

𝑦(0) = 0, 𝑦(1) = 0. 
(2) 

2 Approximate derivatives using finite differences, ensuring that each term in the finite-difference equation is evaluated at 

the same point. 

The central finite difference equations for the second derivative, first derivative, and 𝑦(𝑥) are given by 

𝑑2𝑦(𝑥)

𝑑𝑥2
=

𝑦(𝑥 + 𝛥𝑥) − 2𝑦(𝑥) + 𝑦(𝑥 − 𝛥𝑥)

𝛥𝑥
, 

(3) 

𝑑𝑦(𝑥)

𝑑𝑥
=

𝑦(𝑥 + 𝛥𝑥) − 𝑦(𝑥 − 𝛥𝑥)

2𝛥𝑥
, 

(4) 

𝑦(𝑥) = 𝑦(𝑥). 

(5) 
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Substituting (3) and (4)  in (1) we obtain 

𝑦(𝑥 + 𝛥𝑥) − 2𝑦(𝑥) + 𝑦(𝑥 − 𝛥𝑥)

𝛥𝑥
− 2

𝑦(𝑥 + 𝛥𝑥) − 𝑦(𝑥 − 𝛥𝑥)

2𝛥𝑥
+ 1 = 0. 

(6) 

3 Express the finite-difference equation using array indices. 

Rewriting (6) using indices we have 

 𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖−1

𝛥𝑥
− 2

𝑦𝑖+1 − 𝑦𝑖−1

2𝛥𝑥
+ 1 = 0. 

(7) 

4 Rearrange the finite-difference equation for clarity. 

  Simplifying the process, the finite-difference equation (7) is rearranged so as to collect the y(x) terms. 

(1 + 𝛥𝑥)𝑦𝑖−1 − 2𝑦𝑖 + (1 − 𝛥𝑥)𝑦𝑖+1 + 𝛥𝑥2 = 0. 

(8) 

5 Set up the computational grid. 

For instance, let us solve this equation using 40 points on the grid. 

 
 

Figure 1.  The grid spacing. 

 

In this way, the grid spacing for 𝑛 = 40. Note that we have 41 points including zero, this way 

Δ𝑥 =
𝑥𝑏 − 𝑥0

𝑛
=

1 − 0

41 − 1
= 0.025. 

(9) 

6 Revise the Finite-Difference Equation as needed. 

In this way, substituting the value of Δ𝑥  in (8) we obtain 

1.025𝑦𝑖−1  −  2𝑦𝑖  +  0.975𝑦𝑖+1  +  0.000625 = 0 

                (10) 

7 Apply the finite-difference equation at each grid point. 

Write finite-difference equation at each point on grid. In this way we will count 𝑖 from 1 to 39 because the zero point, 

𝑖 − 1 = 0, 𝑦1−1 = 0 corresponds to the boundary 𝑥 = 𝑎 = 0 and the point 40, i + 1, y39+1 = 0, corresponds to the boundary 

𝑥 = 𝑏 = 1, i.e. 

1.025𝑦0  −  2𝑦1  +  0.975𝑦2  +  0.000625 = 0, 

1.025𝑦1  −  2𝑦2  +  0.975𝑦3  +  0.000625 = 0, 

1.025𝑦2  −  2𝑦3  +  0.975𝑦4  +  0.000625 = 0, 

⋮ 

1.025𝑦36  −  2𝑦37  +  0.975𝑦38  +  0.000625 = 0, 

1.025𝑦37  −  2𝑦38  +  0.975𝑦39  +  0.000625 = 0, 

1.025𝑦38  −  2𝑦39  +  0.975𝑦40  +  0.000625 = 0, 

(11) 

This way, in this example we have 𝒚𝟎 = 𝟎, 𝒚𝟒𝟎 = 𝟎 are the boundaries. 
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8 Formulate the set of equations as a single matrix equation. 

Writing the system of equations in matrix form we obtain 

 
(12) 

See the red boxes that indicate the boundaries. Using the matrix form we can write as 

𝔸𝕪 = 𝕓 

(13) 

9 Solve the matrix equation to find the solution. 

Equation (13) can be solved by calculating the inverse of 𝔸, using Newton-Raphson, Gauss-Jordan, among others. In 

this way solving for and we obtain 

 
(14) 

 

10 Plot the results, displaying x versus y(x), where y(x) is the solution vector obtained from the matrix equation.  

Figure 2 shows the graph of the solution vector 𝕪 against values of  𝑥. 

 
Figure 2. Solution vector 𝕪 against values of  𝒙 

 

III. STUDY CASES 

A. Case 1. Differential equation with Dirichlet condition 

In this case study, the second-order linear equation with Dirichlet conditions given by (1) will be solved. 

Solution. The equation has an analytical solution and is given by 
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𝑦(𝑥) = −
𝑒2𝑥

2(𝑒2 − 1)
+

𝑥

2
+

1

2(𝑒2 − 1)
. 

(15) 

The solution process used finite FDM is the one presented in section II for 𝑛 = 40 and 𝛥𝑥 = 0.025. Figure 2 shows the 

solution using FDM in dash line, against the exact solution with diamonds and the numeric provided by Maple 17 with solid line. 

Analysis of significant digits is outside the scope of this article. For further details, see [24, 25]. 

B. Case 2. Differential equation with Cauchy condition 

A Cauchy boundary condition defines the function value and its normal derivative at the domain's boundary. This is 

equivalent to applying both Dirichlet and Neumann boundary conditions simultaneously. The term is attributed to the renowned 

19th-century French mathematician and analyst, Augustin Louis Cauchy. Now we will solve equation (1) using Cauchy conditions 

given by 

𝑦(0) = 0, 𝑦′(1) = 0. 

(16) 

Solution. Using the boundary conditions (16), the analytical solution of (1) is 

𝑦(𝑥) =
3𝑒2𝑥

4𝑒2
+

𝑥

2
−

3

4𝑒2
. 

(17) 

Applying the FDM methodology of section II for 𝑛 = 100 and 𝛥𝑥 = 0.01, we obtain 

 1.01𝑦𝑖−1  − 2𝑦𝑖   +  0.99𝑦𝑖+1  +  0.0001 = 0. 

(18) 

We will now count i from 0 to 99 and we will have 99 equations with 100 unknowns. In  𝑖 = 0 we we have the node of 

the first boundary condition. To achieve a total of 100 equations, we will incorporate the second boundary condition, utilizing its 

numerical derivative. As suggested in the literature on numerical algorithms, the implementation of a virtual node is a feasible 

approach for this substitution. 

1.01y0  −  2y1  +  0.99 y2  +  0.0001 = 0, 

1.01y1  −  2y2  +  0.99 y3  +  0.0001 = 0, 

1.01y2  −  2y3  +  0.99 y4  +  0.0001 = 0, 

1.01y3  −  2y4  +  0.99 y5  +  0.0001 = 0, 

⋮            ⋮              ⋮ 

1.01y96  −  2y97  +  0.99 y98  +  0.0001 = 0, 

1.01y97  −  2y98  +  0.99 y99  +  0.0001 = 0, 

1.01y98  −  2y99  +  0.99 y100  +  0.0001 = 0, 

 − y99  +  y100  −  0.02 = 0. 

(19) 

To resolve equation (19), we will first substitute the numerical value of the first boundary condition. Following this, we 

will employ numerical methods such as the Newton-Raphson and Gauss-Jordan algorithms, among others, to find the solution. 

 
Figure 2. FDM solution vs analytical and numerical solution of Maple. 
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IV. DISCUSSION 

The second-order linear differential equation (1), with a solution under analysis, was solved using the Finite Difference 

Method (FDM) and served as a model to illustrate the detailed steps involved in applying the FDM method. Numerically, 

equation (1) was solved with the Maple dsolve command for each of the two case studies, considering the boundary conditions 

(2) and (16). Figure 3 displays the absolute error between the numerical solutions derived from Maple 17 and the one obtained 

using FDM with 𝑛 =  40. 

 
Figure 2. Absolut error for study case 3.FDM solution vs. analytical solution and Maple. 

 

The maximum error encountered is  2.29001976𝑥10−5  at 𝑥 = 0.65 for i=26.  It's important to highlight that this error 

is relatively small, considering that only 40 iterations were employed. To achieve higher accuracy, an increase in the number of 

nodes can be implemented, though it should be noted that this will demand more computational effort. Additionally, it is 

observed that the error is smaller at the boundaries, as expected, since these are the known points provided to the system of 

equations (19). The determination of the absolute error for case study 2 is left as an exercise for the reader. 

 

V. CONCLUSIONS  

This paper comprehensively presents the Finite Difference Method (FDM) for student comprehension, as numerical 

analysis textbooks often emphasize its application in partial differential equations while overlooking its use in ordinary 

differential equations. We advocate for an initial understanding and application of FDM in ordinary differential equations before 

implementing it in solving partial differential equations. In this study, two case analyses were conducted for a linear differential 

equation, considering Dirichlet and Cauchy conditions. The results demonstrated good accuracy when compared with solutions 

from numerical software like Maple. 

 

DECLARATION OF INTERESTS STATEMENT 

The authors declare that there are no conflicts of interest regarding the publication of this paper. 

 

ACKNOWLEDGMENT  

The authors would like to thank Roberto Ruiz Gomez for his contribution to this project. 

 

REFERENCES 

1)  Lyttleton, R. A. 1960. The rediscovery of Neptune. Vistas in Astronomy, 3, 25-46. 

2) Swade, D. D. 2003. Calculation and tabulation in the 19th century: Airy versus Babbage. University of London, University 

College London (United Kingdom). 

3) Von Neumann, J., & Goldstine, H. H. 1947. Numerical inverting of matrices of high order. 

4) Burden, R., & Faires, J. 2011. Numerical Analysis 9th edn (Boston: Brooks/Cole).  

5) Chapra, S. C., Canale, R. P., Ruiz, R. S. G., Mercado, V. H. I., Díaz, E. M., & Benites, G. E. (2011). Métodos numéricos para 

ingenieros Vol5. New York, NY, USA: McGraw-Hill. 

6) Daniels, R. W. 1978. An introduction to numerical methods and optimization techniques. Elsevier. 

7)  Butenko, S., & Pardalos, P. M. 2014. Numerical methods and optimization: An introduction. CRC Press. 

8)  Corless, R. M., & Fillion, N. 2013. A graduate introduction to numerical methods. Springer. 

9)  Luthe, R., Olivera, A., & Schutz, F. 1978. Métodos Numéricos, Editorial Limusa. 

http://www.ijmra.in/


Solving Ordinary Differential Equations with Boundary Conditions Numerically 

IJMRA, Volume 07 Issue 02 February 2024                        www.ijmra.in                                                                     Page 528  

10)  Goswami, S., & Hemmati, A. 2020. Response of turbulent pipeflow to multiple square bar roughness elements at high 

Reynolds number. Physics of Fluids, 32(7). 

11)  Messa, G. V., & Matoušek, V. 2020. Analysis and discussion of two fluid modelling of pipe flow of fully suspended 

slurry. Powder Technology, 360, 747-768.  

12)  Avila, M., Barkley, D., & Hof, B. 2023. Transition to turbulence in pipe flow. Annual Review of Fluid Mechanics, 55, 575-

602. 

13)  Moore, H., Olguín, V. C., & Nuño, R. M. 2007. MATLAB para ingenieros. Pearson Educación. 

14) Giron-Sierra, J. M. 2017. Digital Signal Processing with Matlab Examples, Volume 1. Singapore: Springer. 

15) Wang, L. 2020. PID control system design and automatic tuning using MATLAB/Simulink. John Wiley & Sons. 

16)  Shanmugasundaram, N., Kumar, S. P., & Ganesh, E. N. 2022. Modelling and analysis of space vector pulse width 

modulated inverter drives system using MatLab/Simulink. International Journal of Advanced Intelligence 

Paradigms, 22(1-2), 200-213. 

17) Jeong, J., Kim, Y., Bae, S., & Youn, S. 2023. Simulation of classical axion electrodynamics using COMSOL 

multiphysics. Journal of the Korean Physical Society, 1-7. 

18) Lliev, I. K., Gizzatullin, A. R., Filimonova, A. A., Chichirova, N. D., & Beloev, I. H. 2023. Numerical Simulation of Processes 

in an Electrochemical Cell Using COMSOL Multiphysics. Energies, 16(21), 7265. 

19) Hulkó, G., Belavý, C., Buček, P., & Zajíček, K. O. P. 2009. Control of Systems Modeled by COMSOL Multiphysics as 

Distributed Parameter Systems. In COMSOL Conference 2009. 

20) López, D. B. 2009. Análisis de circuitos con PSpice. Alpha Editorial. 

21) Sedra, A., Smith, K. C., Carusone, T. C., & Gaudet, V. 2020. Microelectronic circuits 8th edition Oxford. 

22) Lalitha, M. P., Kumar, K. V. P., & Samala, V. 2014. Design and simulation of voltage and electric field distribution on disc 

insulators using finite element method in Opera software. In 2014 International Conference on Smart Electric Grid 

(ISEG) (pp. 1-6). IEEE. 

23) Jolissaint, L., Veran, J. P., & Marino, J. 2004. OPERA, an automatic PSF reconstruction software for Shack-Hartmann AO 

systems: application to Altair. In Advancements in Adaptive Optics (Vol. 5490, pp. 151-163). SPIE. 

24) Sandoval-Hernández, M. A., Vazquez-Leal, H., Filobello-Nino, U. A., Morales-Alarcón, G. J., Velez-López, G. C., Castañeda-

Sheissa, R., Campos-Dominguez S. Y., Ocaña-Pimentel, S., Domiguez-Chavez, J. A., Sampieri-Gonzalez, C.E., Pretelin-

Canela, J. E.,  Bagatella-Flores, N., Escobar-Flores, A. R, Contreras-Hernandez, A. D.,  Alvarez-Gasca, O., Gasca-Herrera, A. 

E., Perez-Jacome-Friscione, J. E, Cuellar-Hernandez, L. & Pablo-López, B. 2023. Using Horner's Algorithm to Reduce 

Computing Times. International Journal of Engineering Research & Technology (IJERT), 12(6), 325-331, ISSN 2278-0181. 

25) Sandoval-Hernandez, M., Vazquez-Leal, H., Filobello-Nino, U., De-Leo-Baquero, E., Bielma-Perez, A. C., Vichi-Mendoza, J. 

C., Alvarez-Gasca, O., Contreras-Hernandez, A. D., Bagatella-Flores, N., Palma-Grayeb, B. E.,  Sanchez-Orea, J., Cuellar-

Hernandez, L. & Cuellar-Hernandez, L. 2021. The Quadratic Equation and its Numerical Roots. International Journal of 

Engineering Research y Technology, 10(6), 301-305. 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is an Open Access article, distributed under the term of the Creative Commons 

Attribution – Non Commercial 4.0 International (CC BY-NC 4.0) 

(https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and 

building upon the work for non-commercial use, provided the original work is properly cited. 
 

http://www.ijmra.in/

