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ABSTRACT: Networks play an important role in electrical and electronic engineering. It depends on what area of electrical and
electronic engineering, for example, there is a lot more abstract mathematics in communication theory and signal processingand
networking, etc. Networks involve nodes communicating with each other. Graph theory has found considerable use in this area.
In this paper, we introduce some new Networks such as Graph-PW, Network Symmetric Digraph-PW, Change Network Graph-PW,
and Change Network Symmetric Digraph- PW. Moreover, several theorems and results of these networks have been studied.
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INTRODUCTION

For more detail on Graphs, Digraphs, and network Digraphs one. The networks (Graph- PW and symmetric Digraph- PW) and
network changes (Graph-PW and symmetric Digraph-PW) can be the source of many algorithms of practical importance. It is
flexibly adaptable to suit the needs of the application, so it can be used in areas such as syntactic analysis, fault delectation, and
diagnosis in computer, therefore the graphical of this representation of the object and the binary relation on them is a convenient
form of expression. In this paper, we give some definitions and results of network Graphs-PW" and symmetric Digraphs-PW and
networks changes (Graph-PW and symmetric Digraph-PW) [1,2], we refer to the interested reader to [3-30].

1. Networks (Graph-PWAnd Symmetric Digraph-PW):
Definition (1.1): A Graph-PW is a triple Gpy, = (V,E*, ®) consists of a non-empty set V = {v,,v,, ..., v,} of objects called
vertices, points, nodes, or just dots, together with undirected pairs set of vertices
X €j = Vv = vviii #
- {or i =j,n(eij) =V xvy = pw}
is called edges, arcs or lines, satisfy PW = max(n(eij) =vpxv; = pw), where P (non-negative integer) is the maximum
numbers of p-edges or loops between any pairs of vertices and W is the uniform weighted with PW = maxpw depended on
o uniform sign weighted in E*, and incident function ® from E™* to the set P, (V) of all 2-elements or parts subsets of V, that
is,0: E* —» P,(V). The adjacency function matrix Am(Gpy, ) define as
n(el-j) if p>0Aw>0Av;joined to v;;
Am(Gpy) =3 oor o if pw =0 ;
—n(el-]-) if p>0Aw <0Av;joined to v;.

clearthatitisif P = W =1, then the Graph- PW is natural Graph-1, andif P > 0, W = 1 the Graph- PW is mullet Graph- P, and
if P =1,W € R* the Graph- PW is weighted Graph-W and ® in Graph- PW satisfy Ve;; € E*3{v;,v;} € P,(V) 3 ®(e;;) =
{vi,vj}, @ is one —to-one if and only if G)(eij) = DO(eys) = € = €5 0re;; # e,y = (D(el-j) # ®(e,s), onto if V{vi,vj} €
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P,(V)3e;; € E* 3 O({v;,v;}) = e;j or ®(P,(V)) = E*, and if ® one-to-one and onto is called corresponding then there is an
inverse ® ' of ®.

The operation * is modules, plus, product, max, min or ... and the examples are only define the operation * by these operations.
In the following definitions and theorems PW , incident function and adjacency function matrix define as well as.

Definition (1.2): In the network Graph- PW, the weight w is called flow function for each edges of p € n(e;;) with w; < w;y44
andp = Zle w; between any adjacent two pair vertices is called capacity constraint withw < p = Zle w; and the total flow
function for any vertex is w(e) = X, w;+1, and the total capacity constraint for any vertex is p(e) = Z]-=1(Zf=1wi)]_with
w(e) < ple). fw(e) = Yo wiy1 = PW then PW is called value flow, therefore, for any intermediate vertex if the total flow is

PW of these vertices called flow conservation.
By these arguments the name Graph- PWand network Graph- PWare the same.

Definition (1.3): The complement of Gy is Gpy = (V,E¥, ®) with V(Gpy) = V(Gpy), and EF = {e;; = v; vjAi(e;;) = PW —
n(e;j)Vv;, v € V(Gpw ),and ®:E* - P,(V) .
Therefore Gpy U Gpy = Ky) — PW is called complete Graph- PW.

Definition (1.4): The regular of Gpyis Rpy, = (V,E*, @) with

E* ={e;; = v;v;: deg v; = degv; /\n(eij) =v; x V= pw = PW Vv, v; € V(Gpw)}.

Gpy is semi — regular if one or two vertices have the equal degree different of all vertices, that is ,
(deg v, = degv,) # (deg v; = degv;)Vi,j A n(e;) = v;*v; = PW

Theorem (1.1): If a Graph-PW Gpy, = (V, E*, ®) or Gpy has an isolated vertex, then Gpy, — v or Gpyy U Gpyy has not an isolated
vertex.

Proof: Since Gpy, = (V, E*, @) define on operations, then the operation module has only isolated vertex, and the operation of
product has an isolated vertex, if one of vertex is zero, and the other operations Gpy, has an isolated vertex, therefore Gpyy — v
or Gpyw U Gpy has not an isolated vertex.

Now, by these theorem Gpyy, Gpy and Gpyy U Gpy, well define are connected and we can be taken these networks.

Definition (1.5): In the value flow of the networks, if Y,;—ow;1; > PW, then thereis Y ;_ow;;; such that X, qw;q —
Yj=owjs1 = PW,andPW <p(e) = Z]-:l(Zf:lwi)]_.

Definition (1.6): A sub-Graphs-PW of a Graph-PW is H,,, or Gpyy = (V,E*,®) S Gpyy withV(Hyy,) S V(Gpy) or V(Gpy) =
V(Gpw), E* (Hypy) or

E*(Gpw) € E*(Gpw), and®(Hp,,) or ®( Gpw) € @(Gpw).-

Now, let Hy,, = (V(H), E*(H), ®(H)), Y, = (V(Y), E*(Y), ®(Y)) € Gpy = (V,E*, @) withV(Y) = V(Gpyy) — V(H),E*(Y) =
{e;j = vivj:n(eij) =v;*v;=pw ¢ E*(H)}. Then Hp,UY,, € Gpy, and Hy, +Y,, =Gpy, where V(H)UV(Y) =
V(Gpw) and E*(H) U E*(Y) U {e;; = vyv;: v, EV(H),v; € V(Y)VUi,vj,n(eij) = v; *V; = pw}.

Let H,,, = (V(H),E*(H), ®(H)), Yy = V() E*(Y), (YY) S Gpy = (V,E*,®) S Gpy withV(Y) =V(G)— V(H),E*(Y) =
{e;j = viv}-:n(eij) =v; *v; = pw & E*(H)}. Then Hp,, U Yy, S Gpy, and
Hpy U Yy = Gpwiff
E*(HYUE*(Y)U{e; =vvjiv; € V(H),v; € V(Y) An(e;) = v xv; = pw € E*(Gpy ) }-
Now, we can give the following results on the network Graph- PW on flow function, value flow and capacity constraint.

Theorem (1.2): If Hyy = (V(Hpu), E* (Hpn), @(Hp) ) € Gpy = (V, E*, @) of network Graph- PW, with pw = PW, then Hy,, +
Gpw — V(pr) = Gpw-

Proof: By definition (1.6) the result follows.
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Theorem (1.3): Let w(e) = Y;—owi41, ple) = ijl(Zle a)i)]_ > PW be total flow function and capacity constraint of networks
Graph- PW. Then there is

Yrowira(e),p(e) = X (X0, w;) € Hpwor Gpyw — V(Hpy) S Gpw = (V,E*, @) such that

l. w(e) — Yo wyryy = PW, and

L p©@ = (S, 00), (&) = 5oy (S, 00), = PW.

Proof: I. Since Y, o1 € Hyyor Gpy — V(Hp,,), then ¥, _o w,11 € Gpy, and by definition (1.5) the result follows, and
Il. Since p(e) = ¥yoy (0, 0 )T € Hyyor Gpy — V(Hpy,) ,then
p(e) =Y, (T0_, w; )r € Gpy, and the result follows.

Theorem (1.4): Let w(e) = Yo w11, p€) = X1 (X0, w,-)]_ be total flow function and capacity constraint of networks Graph-

PW have value flow and let, w;(e), p;(e) be total flow function and capacity constraint of sub-graph- pw from Hy,, to Gpy, —
V(H,y) . Then PW = w;(e) — w,(e),PW = p;(e)-p,(e) , where w,.(e) p,(e) are the total flow function and capacity constraint
from Gpy, — V(H,y) to Hy,, .Moreover, W < pj(e) .

Proof: I. Since w(e) =Y;—o w41, p(e) = ijl(Zle a)i)j € Gpy ,then the total flow

function and capacity constraint from Hp,, or Gpy, — V(pr)to Gpy equal the total flow
function and capacity constraint from Gpy, to Hy,, o7 Gpy — V(pr), and
Hyy + Gpw — V(pr) = Gpy, then PW = wj(e) —w.(e), PW = pj(e)-pr(e)
Moreover, w;(e) — w,(e) < w;(e) < pj(e).

Definition (1.7): Let Gpyy = (V,E*(Gpw ), @), Gpy = (V,E*(Gpw ), ®(Gpw) S Gpw
be sub — Graph — PWand sub — Graph — PW of network Graph — PW with
V={v:i=123,..,n}, and
E*(Rpw ) ={e;j = vivj: degv; = degv; Vi,j A n(e;) =v;*v; = PW},and
E*(Rpw) = {&;j = vivj: degv; = degv; Vi,j A n(e;) =v;* vy = PW & E*(Gpy )}
Then Gpyyand Gpyy, are called Regulars sub-graph-PW and sub — Graph — PW denoted by
Rpy and Rpy, . Gpyy and Gpy, are semi — reglars if one or two vertices have the equal degree different of all vertices, that is,
(deg v, = degv,) # (degv; = degv))Vi,j A n(e;)=v;*xv; = PW Vv PW.

Theorem (1.5): Rpy, = (V,E*, ®) is regular sub — graph — PWiff Rpy, or Rpy, U Rpy, are regulars.
Moreover, if Rpy/is semi — reglar sub — Graph — PW, then Rpy, V Rpy U Rpy, are semi — reglars or regulars.
Therefore, Rpy, = Rpy, if f PW = PW.

Proof: See definition (1,7).

Definition (1.8): Let Gpy, Gpy S Gpy, be Graph — PW and Graph — PW of network
Graph — PWwith V(Gpy ) = V(Gpw) = V(Gpw), E( Gpw) N E(Gpy ) = ¢,and
Gpw U Gpy = Gpy.Then Gpy = (V(GPW),E* (épw), CE) where
E* (épw) = E*(Gpw) U {1(e;;):7i(e;;) = PW —n(e;;),n(e;;) € E*(Gpw)} and
G = (V(GPW),E* (GTPW),C'I_'D) where
E* (5PW) = E*(Gpw) U {Aie;;): 1(e;;) = PW — n(e;;), n(e;;) € E*(Gpw)}-

Theorem (1.6):  Gpy U Gpw=(V(Gpy),E* (EPW) UE* (G_'PW),Cb u o).
Proof: By definition (1.8) the result follows.
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Theorem (1.7): 1. GPW U GPW = G_PW = GTPW n G_.PW' W|th GPW V) GPW = GPW
2. GTPW V) G_IPW = GPW = GPW n GPW ,Wlth
E* ( Cpy U EPW) = {max (n(eij),ﬁ(eij)) :n(e;;) € E*( Gpw )or E*( Gpy )and
ﬁ(eij) EE” (6PW) orE* (C?PW)}.

Proof: 1. Since Gpy U Gpyw = Gpy , then Gpyy U Gpyy = Gpyy, and by Morgan laws
Gpw U Gpy = Gpw N Gpy, and
2. épw U épw = Gpy = m (by Morgan laws).
Definition (1.9):Let Hpyy, Hpyy € Gpyy be Graph — PW and Graph — PIWnetwork
Graph — PWwith V(Hpy ) = V(Hpw),E( Hpyw ) N E(Hpy ) = ¢, and

Hpw U Hpy = Gpy.Then Hpy = (V(Gpw), E*(Hpw ), P (Hpw)) where

E*(Hpw) = E*(Hpw) U {7i(es;):(e;j) = max(PW,BW) — n(e;;),n(e;;) € E*( Hpw)}
and  Hpy = (V(Gpw), E*(Hpw ), ®(Hpy ) )where
E*(Hpw) = E*(Hpw) U {71(e;;): (e;j) = max (PW,PW) —n(e;;), n(e;;) € E*(Hpw)}

Theorem (1.8): HPW U HPW = GPW U G_pw.
Proof: By definition (1.3) and (1.9), the result follows.

Definition (1.10): Let Yo, Y1y € Gpyy be Graph — PW and Graph — PW of network
Graph — PWwith Ypy = (V(Gpw), E*(Yow ), @ ( Ypu)),
E*(Ypw) = {ni(e;;):1(e;j) = PW — n(e;; ) Yv;,v; € V(Gpy)} and
YPW = (V(Gpw), E*( YPW): @ ( YPW)),
E*(Ypy) = (7ie;;):1(e;j) = PW — n(e;; ) Yvi,v; € V(Gpw )}

Theorem (1.9): Gpy, U Ypy-and Gpy, U Yoy are complete Graph — PW and  Graph-PW/.

Proof: By definition (1.3) and (1.10)Gpy U Gpyy = Gpy U Yoy 0F Gpyy U Yoy with
PW = PWand PW < PW or PW = PWand PW < PWwhich are completes.

Definition (1.11): Let Gpyy = (V,E*, ®) S Gpy, be connected Graph — PW with loops and

V(Gpw) = V(Gpy) and let G2, = (V, E;, @,) define as-well-as Gpy, with joint two vertices v;, vjnon-adjacency by n(e;;) = v; *
v; with n(e;.) and n(erj) adjacency by v,., thatis, equivalence 1 < d(vi, vj) < 2,where v; is adjacent to v;in Gpw, d(vi,vj) is
the minimum numbers of vertices except first or last vertex between v;, v;. We can continuous to define G3, = (V, E;, @), ...,
then, G5, = (V, E;,®,) is called a Power Graph-PW.

Theorem (1.10): G2, = Gpyif f 7 = maxd(v;, v;)

Proof: Since Gpy = (V,E*,®) S Gpywith the loops, thenGZ, S Gpy, and so on Ghyt S Gpy, and Ghy = Geyiff 1T =
maxd(vi, vj).
Now, Ry, Gew, Gow Hpw, How, Vow, Yow, andGE,, well define connected network Graph-PIand Graph-PW/.

Definition (1.12) A network symmetric Directed Graph-PW s triple SDpy, = (V,A*,®) consists of a non-empty Set V =
{vy,vy, ..., v} of objects called vertices, points, nodes, or just dots, together with directed pairs set of vertices

A = {a = (a;; = (vi,vj) U (vj,vi) =a;)):i#jori =jA}

n(al-j) SV RV =V KV = Ppw

is called edges, arcs or lines, satisfy PW = max(n(a) =V *y; = pw), where P (non-negative integer) is the maximum numbers
of p-arcs or loops between any pairs of vertices and W isthe uniform weighted with PW = maxpw depended onw uniform
sign weighted in w in A*, and incident function ® from A to the set V2 that is,
®: A* » V2. The adjacency function matrix Am(SDpy,) define as
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n(@) if P>0Aw>0Av;joined tov;;
Am(SDpy,) =4 0 or © if pw =0 ;

—n(a) if P> 0Aw <0 Awv; joined to v;.
clearthatitisif P = W = 1, then the symmetric Digraph- PW is natural symmetric Digrahp-1, and if P > 0, W = 1 the symmetric
Digraph- PW is mullet symmetric Digraph-P, andif P = 1, W € R* the symmetric Digraph- PW is weighted symmetric Digraph-
W and ® in symmetric Digraph- PW satisfy
vae A 3{(v;,v;), (v, v;)} € P,(V) 3 ®@) = {(v;,v;), (v}, v;)}, Ois one —to-one if and only if ®(a)=D(a) = a;=
ajora; # a;= O(a;) # (D(a]-), onto ifv{(vi,vj), (vj,vi)} €EP,(V)Ja€eA* > G)({(vi,vj), (vj, v;)}) =aor ®(P,(V)) = A%, and

if ® one-to-one and onto is called corresponding then there is an inverse o ' of O.
In the following definitions and theorems, incident function and adjacency function matrix define as well as.

Definition (1.13):In the network symmetric Digraph- PW, the weight w is called symmetric flow function for each arcs of p €
n(a) withw; < w;;,andp = Zf;l w; between any adjacent two pair vertices is called symmetric capacity constraint with w <
p= Zle w; aand the total symmetric flow function for any vertex is

w(@) = Y;—owir1, and the total symmetric capacity constraint for any vertex is p(a) = ijl(Zlewi)]_with w(@) < p(a).
If w(@) = Y=o W;s1 = PW then PW is called value symmetric flow, therefore, for any intermediate vertex if the total symmetric

flow is PW of these vertices is called symmetric flow conservation.
By these arguments the name symmetric Digraph- PWand network symmetric Digraph- PWare the same.

Definition (1.14): The complement of SDpy, is SDpy, = (V, 4%, ®) with

V(SDpy) = V(SDpy ), and

A ={a=(v;v)u(vjv;) A 7a) = PW — n(a)Vv;,v; € V(SDpy ), and

®: A" - V2. Therefore SDpyy U SDpy, = Kjy; — PW is called complete symmetric Digraph- PW.

Definition (1.15): The regular of SDpy,is SRpy, = (V, A*, @) with
A*={a= (vi v]-) U (vjv;): deg v; = degv; An(a) = v; * v; = pw = PW Yv;,v; € V(SDpy)}
and SDpyy, is sime — regular if

(indeg v, = indegv,) # (indeg v; = indegv]-) Vi,j A n(a) = v; * v=PW

Theorem (1.12): If a symmetric Digraph- PW SDpy, = (V, A*,®) or SDpy has anisolated vertex, then SDpy, — v orSDpy, U SDpy,
has not a isolated vertex.

Proof: Since SDpy, = (V, A%, @) is defined on operations, then the operation module has only isolated vertex, and the operation
of product has isolated vertex, if one of vertex is zero, and the anther operations SDpy;, has isolated vertex, thereforeSDpy, — v
or
SDpy U SDpy, has not an isolated vertex.

Now, by these theorem SDpy,,SDpyy and SDpy, U Gpyy well define are connected and we can be taken these network.

Definition (1.16): In the value flow of the networks, if Y;_ow;; > PW, then there is };_ow;.; such that };—ow;1q —
Yicowjsr = PW,andPW <p(a) =¥, (25, a)l-)j.

Definition (1.17): A sub-symmetric Digraphs-PW of a symmetric Digraph-PW is SH,, or SDpy = (V,A*,®) S SDpy
withV(SH,,,) S V(SDpy) or
V(SDpw) = V(SDpw), A*(SHyy,) or
A*(SDpy) S A*(SDpy),and @ (SH,,,) or @(SDpy) S ®(SDpy).
Now, let SH,,, = (V(SH),A*(SH),®(SH))and
SYyy, = (V(SY),A*(SY), ®(SY)) S SDpy = (V, A", ®) with
V(SY) = V(SDpy) — V(SH),
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A*(Y) ={a= (v;,v;) U (vj ,v)in(@) = v; * v; = pw & A*(SH)}. Then
SHyy, U SY,y, € SDpy, and SHy,, + SY,,,, = SDpy,, where V(SH) UV(SY) = V(SDpy,)and A*(SH) U A*(SY) U {a=(, vj) U
(vj,vi): v; EV(H),v; € V(Y)Vv, v,
n(@) = v; *v; = pw}.
Let SH,, = (V(SH),A*(SH), ®(SH)),
SYyy = (V(SY),A*(SY), (SY)) < SDpy, = (V,A*,®) € SDpy, with
V(SY) =V(SD) — V(SH),
A*(Y) ={a= (v;,v;) U (vj,vi): n(a) = v; *v; = pw ¢ A*(SH)}. Then
SHp,, U SYy, € SDpy, and SHp,, U SYy,y, = SDpwiff
A*(SH)UA*(SY) U {a= (v,v)) U (v;,v;):v; € V(SH),v; € V(SY) A

n(a) = v; *xv; = pw € A*(SDpy ) }.

Now, we can give the following results on the network symmetric Digraph- PW on symmetric flow function, value symmetric
flow and symmetric capacity constraint.

Theorem (1.13): If SH,,, = (V(SHPW),A*(SH,,W),d)(SHpW)) C SDpy = (V,A*,®) of network symmetric Digraph- PW, with
pw = PW, then
SHpy + SDpy — V(SHpy) = SDpy.

Proof: By definition (1.17) the result follows.

Theorem (1.14): Let w(a) = Y=o w;41, p(@) = Z,'=1(Zf=1 wi)j > PW be total symmetric flow function and symmetric capacity
constraint of networks symmetric Digraph- PW. Then there is
Yo Wisr,p@) = zrzl(zf:1wi)r € SHpy,or SDpy — V(SHpy) S SDpy = (V,A*, @) such that
I w@) — YyegWrpq = PW, and
p@) = 3o (B, 01); =p@) = Byey (B, 01), = PW.

Proof: I. Since },—o wiy; € SHy,0r SDpy, — V(SHp,,), then ¥, w,41 € SDpy, and by definition (1.5) the result follows, and
1. Since p(a) = X,y (X, w; )r € SHp,0r SDpy — V(SHpy) jthen

p@) =X, (Zle w; )T € SDpy, and the result follows.

Theorem (1.15): Let w(a) = Y- w;is1, p@) = Zj=1(Zf=1 wi)j be total symmetric flow function and symmetric capacity
constraint of networks symmetric Digraph- PW have value symmetric flow and let, w]-(a),pj (a) be total symmetric flow function
and symmetric capacity constraint of sub- symmetric Digraph- pw from SH,,, to SDpy — V(SHp,) . ThenPW = w;(a) —
w,(a),PW = p;(a)- p,(a) , where w,(a) p,(a) are the total symmetric flow function and symmetric capacity constraint from
Gpw — V(Hpy) toH,,,.Moreover, < p;(a) .

Proof: Since w(a) = Yo wi41,p(@) = ijl(Zle wl-)j € Gpy ,then the total
symmetric flow function and symmetric capacity constraint from SH,,, or
SDpy — V(Spr)to SDpy, equal the total symmetric flow function and
symmetric capacity constraint from SDpy, to SH,,, or SDpy, — V(S pr), and
SHpy + SDpy — V(SHyy,) = SDpy, then PW = w;(a) — w,(a), PW = p;(a)- p,(a)
Moreover, wj(a) — w,(a) < w;(@) < p;(a).

Definition (1.18): Let SDpy, = (V,A*(SDpy ), ®)and
SDpy = (V, A*(SDpw), ®(SDpw) S SDpy
be sub — symmetricDigraph — PIWand sub — symmetric Digraph — PWW of network
symmetric Digraph — PW with V = {v;: i = 1,2,3,...,n}, and
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A*(SRpy ) = {a =vv;: degv; = degv; Vi,j A n(a) = v; xv; = PW},and
A*(SRpy) = {a = v;v;: indeg v; = outdegv; Vi,j A
n(a) = v; xv; = PW & E*(SDpy )}

Then SDpy,and SDpy, are called Regulars sub- symmetric Digraph-PW and sub — symmetric Digraph — PWdenoted by
SRpy, and SRpy,. SDpy, and SDpy, are semi — regular if one or two vertices have the equal degree different of all vertices,
thatis,

(indeg vy = indegv,) # (indeg v; = indegv))Vi,j A n(a) = v; xv; = PWV PW.

Theorem (1.15): Rpy, = (V,A*, ®) is regular sub — symmetric Digraph — PWiff SRpy,
or SRpy, U SRpy, are regulars. Moreover, if SRpy is semi— reglar sub — symmetric Digraph — PW,then SRpy, 0rSRpy, U
SRpy, aresemi— reglars or regulars. Therefore, SRpy, = SRpy, if f PW = PW.

Proof: See definition (1,7).

Definition (1.19): Let SDpy,,SDpy, € SDpy, be Graph — PW and Graph — PW of network
Graph — PWwith V(SDpy ) = V(SDpy ) = V(SDpy), A*(SDpw) N A*(SDpy ) = ¢, and
SDpyy U SDpyy = SDpyy.Then SDpyy = (V(SDPW),A*(SEPW),d?) where
A*(SEPW) = A*(SDpy) U {Ai(a): i(a) = PW — n(a),n(a) € A*(SDpy)} and
SDpy = (V(SDPW),A* (C?PW) , 5) where
A*(SBPW) = A*(SDpw) U {R(a): Ai(a) = PW —n(a),n(a) € A*(SDHpy)}.

Theorem (1.16):  SDpy, U SDpy=( V(SDPW),A*(SBPW) U A*(SEPW),5 u &)
Proof: By definition (1.8) the result follows.

Theorem (1.17): 1. SDPW U SﬁpW = SEPW = SEPW n Sﬁpw, Wlth SDPW U Sﬁpw = SDPW
A*(SBPW U SL'_?PW) = {max(n(a),(a)) : n(a) € A*(SDpy )or A*( SDpy )and

fi(a) € A*(SEPW)orA* (SBPW)}.

Proof: 1. Since SDPW U SDPW = SDPWI then SDPW V] SDPW = SEPW = SEPW n SEPW
(by De-Morgan laws), and so 2.

Definition (1.20): Let Hpyy, SHpy, S SDpy, be sub — symmetric Digraph — PW and sub —
symmetric Digraph — PW of network symmetric Digraph — PWwith
V(SHpw) =V (SHpw),E(SHpw ) N E(SHpy ) = ¢,and
SHpw U SHpy = SDpy.Then SHpy = (V(SDpw), A*(SHpy ), ®(SHpy;)) where
A*(SHpy ) = A*(SHpw) U {A(a): (@) = max(PW,PW) — n(a),n(a) € A*( Hpy )} and
Hpyw = (V(SDpw), A*(SHpw ), ®(SHpy) )where
A*(SHpy ) = A*(SHpy) U {Ai(a):1(a) = max (PW,BPW) —n(a),n(a) € A*( Hpy )}

Theorem (1.18): SHPW U SHPW = SDPW U Sﬁpw.

Proof: By definition (1.3) and (1.9), the result follows.
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Definition (1.21): Let SYpu,SYpys € SDpyy, be sub — symmetric Digraph — PIW and sub — symmetric Digraph —
PW of network
symmetric Digraph — PWwith SYpy, = (V(SDpy), A*(SYpw ), ® (S Yow ),
A*(S Yoy ) = {fi(a): (@) = PW —n(a) Yv;,v; € V(SDpy )} and
SYPW = (V(SDPW)'A*(S YPW)'(D (SYPW))r
A*(SYy) = {f1(a): (@) = PW —n(a) Yv;,v; € V(SDpy)}-

Theorem (1.19): SDpy, U SYpy,and SDpyy, U SYpy, are complete symmetric Digraph — PIW and symmetric Digraph-PIW/.
Proof: By definition (1.3) and (1.10)we have

SDpy U SDpyy = SDpy U SYpy, or SDpyy, U SYey, with
PW = PWand PW < PW or PW = PWand PW < PWwhich are completes.

Definition (1.22): Let SDp,, = (V, A*,®) € SDpy,, be connected sub — symmetric

Digraph — PW with loops and V(SDpy,) = V(SDpy/) and let SDE,, = (V, A3, @,) define as-well- asSDpy, with joint two vertices
v;, vjnon-adjacency by n(aij) = v; * v;with n(a;) and n(arj) adjacency by wv,, that is, equivalence 1 < d(vi, vj) <
2, where v; is adjacent to vjin SDpw, d(vi, vj) is the minimum numbers of vertices except first or last vertex between v;, v;. We
can continuous define SD3,, = (V, A%, ®3), ..., then,SDL,, = (V, A}, @,)is called a Power symmetric Digraph-PW.

Theorem (1.20): SD%,, = SDpy if f 1 = maxd(v;,v;)

Proof: Since SDpy, = (V,A*,®) < SDpy with the loops, thenSD2,,, € SDpy,, and so on
SDLyt S SDpy, and SD%y, = SDpyif f r = maxd(v;, v;).

Now, SRp,w, SDpy, SDpw SHpw, SHpw, SYpu» SYp, and SDE,, well define connected network symmetric Digraph-PWand
symmetric Digraph-PWW.

Theorem (1.21): Gpy = SDpyw  iff V(Gpw) =V(SDpw),and  Dpy = Dy,

Proof: Gpyy = SDpy  iff  SDpw = Dpw U D ., satisfy V(Gpy) = V(SDpw),

ez{vi,vj}=a= (a;j =(vi,vj)u(vj,vi)= ai‘jl)Viij,i = j,and

deg v;= indeg v;= oudeg v; ,and
viEV(GpW) ViEV(SDpW) viEV(SDpW)
deg n(e;) = indegn(a) = oudegn(a)
n(eij)eE* n(a)eA* n(a)ea*
Moreover E*= A" iffE* = (ADpw) = ADD 1)) andP, (V) = V2 iff Gpyy = (Dpw = Dp).

2. Networks Change Graph-PWand Change Symmetric Digraph-PW:
Definition (2.1): Let Gpy = (V,E,®) be Graph-PW. Then we can define the change Graph-PW as L(Gpy) =
(VE,E*(L), L(®))with V(E") = {n (e;)): 1 (i) € E*(Gpw)},
E*(L) = {e;; = n(eg)n(er;): n(e;j) = nley) * n(er;) = pw},
E*(L) = {ei]- = n(eir)n(erj): n(el-]-) = v *v; = pw},
E*(L) = {e;j = n(e;)n(e,;):n(e;) = vy * v, = pw}or
E*(L) = {eij = n(eir)n(erj): n(eij) = v, = pw}, thatis,
the set n (e;;)-edges of E* (Gpy ) is vertices in L(Gpy/) ,and thee;; in E*(L) if and only if n(e;) and n(er]-) are adjacency of
vertex vy,
L(®):E*(L) - P,(V(E™)),and
PW =maxpw = maxn(eij) * n(erj), Vi ¥ Vj, VU * V0T U = PW.
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Moreover, we can be found L?(Gpy) = L(L(Gpy) ),-.., L (Gpyy) = L(L*1(Gpy)) .
Applied all definitions in the definition(1.1) and definition (1.2) in the definition (2.1).

Definition (2.2): The complement of network change Graph-PW
UGpw) = (V(E™), E*(L), L(®)) is L(Gpy) = (V(E*),E*(L), L (@))with
E*(L) = {e;;:i(e;;) = PW — n(e;;),i #jori=j}
L(@):E*(L) - P,(V(E™)), and
PW = max ﬁ(e”).

Moreover, L(Gpy) U E*(L) = Ky (g — PW.

Definition (2.3): Let Gpy, = (V, E*, ®) be network regular Graph-PW. Then we can define the network change regular Graph-PW
as L(Gpy) = (V(E*),E*(L), ®(L)) with
V(E*) = {PW: PW € E*(Gpy)},

E*(L) = {eij : Tl(eij) =

®(L): E*(L) > P,(V(E")),and PW = maxpw.

virdvl-1)

> PW*PW=pw},

Definition (2.4): Applied definitions (1.5) and (1.6) in the network change Graph-PW.
Theorem (2.1): Applied theorems (1.1),(1.2),(1.3) and (1.4) in the network change Graph-PW.

Clear thatif Gpy, = (V, E*, @) is connected Graph-PW. Then L(Gpy ) = (V(E*),E*(L),L((D)) is connected change Graph-PW, if
Gpyw = (V,E*,®) has a soiled vertex, then Gpy, = (V,E*,®) or Gpy U Gpy, are connected, so L(Gpy) and  L(Gpy U
Gpyw ),moreover can be looking the change Graph-PW L( Gpy, U Gpyy)has only one vertex with the loops. If Gpy, = (V, E*,®) has
a soiled vertex, then

LGpy) = (V(E*), E*(L), L(CD)) is connected .
Definition (2.5): The definitions (1.7) define similar of definition (2.3) in the network change Graph-PW.
Definition (2.6): Applied the definitions (1.8), (1.9),(1.10) and (1.11) in the network change Graph-PW.

Theorem (2.2): Applied theorems (1.6), (1.7),(1.8), (1.9) and (1.10) in the network change Graph-PW.
Now, let Gpy, Gpy S Gpy be Graph — PW and Graph — PWwith
V(Gpw) =V(Gpw ), E(Gpw) N E(Gpy) = @,and Gpy U Gpy = Gpyy.
Clear that Gpy is L( Gpy) , and L? (Gpy) = L(L(Gpy) ),y L*(Gpy) = LI 2(Gpyy)) andGpy, is L(Gpy,) , and L2(Gpy) =
L(L(Gpw) )y L' (Gpw) = LL™ M (Gpw))-

Theorem (2.3): Gpy, Gpy, Hpw and Hpy have network change Graph-PW and
L (épw),LZ (C?PW) =1 (L (EPW)) e (G'_PW) = L1 (éPW),
L (EPW) 12 (EPW) =1 (L (épw)) I ( EPW) =L(L"? ( EPW)),

L(Hpw), L*(Hpw) = L(L(Hpw) )., L*(Hpw) = L(L"*(Hpw)) and
L( HPW) , L (HPW) = L(L(HPW) | Ln(HPW) = L(Ln_l(HPW))-

Proof: By the definition (2.1) the result follows.

Theorem (2.4): Every GL,, = (V, E;, ®,) thereisL(GE,, ), 7 = 1,2,3, ..., maxd(v;, ;).
Moreover, L2(Ghy) = L(L Ghy), .., LM(Ghy ) = L1 (GEy).
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Proof: By theorem (1.10) and the definition (2.1) the result follows.

Definition (2.7): Let SDpy, = (V,A*, ®) be Symmetric Digraph-PW. Then we can define the change symmetric Digraph-PW is
LSDpy) = (V(A"),A*(L), L(P) )with
V(4") = {n(a):n(a) € A"(SDpw)},
A*(L) = {a;; = nay) n(ay):n(ay;) = n(a,) * n(ay) = pw},
A*(L) = {a;; = n(az) n(a,;):n(a;) = v; *v; = pw},
A*(L) = {ai]- =n(a;.) n(arj): n(aij) = v, * v, = pw} or
A (L) = {ai]- =n(a;.) n(arj): n(ai]-) =v = pa)},
that is, the symmetric set n (a;;)-arcs of A* (SDpy) is vertices in L(SDpy,) , and thea;; in A*(L) if and only if n(a;-) and n(arj)
are adjacency of vertex v,.,
L(®):A*(L) » V?(4*),and
PW = maxpw = max n(ai]-) * n(arj), U *Vj, Uy * V0T Uy = PW.

Moreover, we can be found L?>(SDpy) = L(L(SDpy) ),-... L*(SDpy) = L(L* *(SDpy)) .
Applied all definitions in the definition (1.12) and definition (1.13) in the definition (2.7).

Definition (2.8): The complement of change symmetric Digraph-PW
LSDpw) = (V(A4),A* (L), L(®)) is L(SDpy) = (V(A*),A*(D),L (@ ))with
A (D) = {a;;:7(a;;) = PW — n(a;;),i # jori=j}
L(®): 4*(L) » V?(4"), and
PW = max ﬁ(aij) = maxpw.
Moreover, L(SDpy) U A*(L) = Kjyary — PW

Definition (2.9): Let SDpy, = (V,A*, ®) be regular symmetric Digraph-PW. Then we can define the change regular symmetric
Digraph-PW is
L(Gpy) = (V(E*), E*(L), ®(L))withV(E*) = { PW: PW € E*(Gpy)},
Vvl -1)
A*(L) = {aij : n(aij) = ﬁ
®(L): A*(L) > P,(V(E*)),and PW = maxpw

PW x PW = pw}

Definition (2.10): Applied definitions (1.14) and (1.15) in the network change symmetric Digraph-PW.

Theorem (2.5): Applied theorems (1.12), (1.3), (1.14) and (1.15) in the network change symmetric Digraph-PW.

Clear that if SDpy, = (V, A*,®) is connected symmetric Digraph-PW, then
L(SDpy) = (V(A*),A*(L),L(':D)) is connected change symmetric Digraph-PW, if SDpy,, = (V,A*, ®) has a soiled vertex, then
SDpy, = (V,E*,®) or SDpy, U SDpy, are connected, so L(SDpy) and L( SDpy, U SDpy,),moreover can be looking the change
symmetric Digraph-PW L( SDpy, U SDpy/)has only one vertex with the loops. If SDpy, = (V, A*,®) has a soiled vertex, then
L(SDpy) = (V(A*),A*(L),L(®)) is connected .

Definition (2.11): The definition (1.16) define similar of definition (2.9) in the network change symmetric Digraph-PW.
Definition (2.12): Applied the definitions (1.17),,(1.18),(1.19) and (1.20) in the network change symmetric Digraph-PW.

Theorem (2.6): Applied theorems (1.17),(1.18),(1.19), and (1.20) in the network change symmetric Digraph-PW.
Now, let Gpy, Gpy € Gpy be Graph — PW and Graph — PWwith
V(Gpw) = V(Gpw),E( Gpw) n E(Gpw) = (p, and GPW V] GPW = Gpw.
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Clear that Gpy is L( Gpy) , and L? (Gpy) = L(L(Gpy) ),y L*(Gpy) = L(L" 2 (Gpy)) andGpy, is L(Gpy,) , and L2(Gpy) =
L(L(Gpw) )es I (Gpw) = L (Gpw))

Theorem (2.7): SEPW, SEPW, SHpy, andSHpy, have network change symmetric
Digraph-PW and

L(SBPW),LZ (SBPW) =1 (L(SBPW)>, Ln(SBPW) = L(Ln—l(SBPW),

L(SBpw ), 12(SBpw ) = L (L(sl_)'pw)>, s 7(8Bpy) = L(LP( SBp ),
L(SHpw) , I*(SHpy) = L(L(SHpw) )., " (SHpy) = L(L"*"*(SHpy)) and
L(SHpw), L*(SHpw) = L(L(SHpw) )., L"(SHpw) = L(L*~* (SHpy)).

Proof: By the definition (2.7) the result follows.

Theorem (2.8): Every SD}3,, = (V, A;,®,) thereisL(SD}y,),r = 1,2,3, ..., maxd(v;, ;).
Moreover, I2(SD%,,) = L(L SD%y,), ..., L*(SD}y, ) = L1 (SDEy).

Proof: By theorem (1.20), by the definition (2.7) the result follows.

3. CONCLUSION

In this paper, we determined some new Networks. Furthermore, several theorems and results of these networks have been
studied. In the future, we are interested in designing some new networks and then studying their topological indices which will
be quite helpful in understanding their underlying topologies.
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